
ON WEIGHTED RECTANGLE PACKING
WITH LARGE RESOURCES �
Aleksei V. Fishkin,1 Olga Gerber,1 and Klaus Jansen11University of Kiel
Olshausenstr. 40, 24118 Kiel, Germany{avf,oge,kj}@informatik.uni-kiel.de

Abstract We study the problem of packing a set ofn rectangles with weights into a ded-
icated rectangle so that the weight of the packed rectanglesis maximized. We
consider the case of large resources, that is, the side length of all rectangles is
at most1 and the side lengths of the dedicated rectangle differ by a factor of at
least1="4, for a fixed positive" > 0. We present an algorithm which finds a
rectangle packing of weight at least (1� ") of the optimum in time polynomial
in n. As an application we show a(2+ ")-approximation algorithm for packing
weighted rectangles intok rectangular bins of size(a; b).

Keywords: Rectangle packing, approximation algorithms

Introduction

We address the following problem of packing rectangles withweights into
a rectangle. We are given a dedicated rectangleR of width a � 0 and heightb � 0, and a listL of n rectanglesRi (i = 1; : : : ; n) with widthsai 2 (0; a℄,
heightsbi 2 (0; b℄, and positive integral weightswi. For a sublistL0 � L of
rectangles, apackingof L0 into the dedicated rectangleR is a positioning of
the rectangles fromL0 within the area[0; a℄ � [0; b℄, so that all the rectangles
of L0 have disjoint interiors. Rectangles are not allowed to rotate. The goal is
to find a sublist of rectanglesL0 � L and its packing inR which maximizes
the weight of packed rectangles, i.e.,

PRi2L0 wi.
The above problem is a natural generalization of the knapsack problem to

the two-dimensional version.�Supported by EU-Projekt CRESCCO, Critical Resource Sharing for Cooperation in Complex Systems,
IST-2001-33135, by EU Thematic Network APPOL, Approximation and Online Algorithms, IST-2001-
30012 and by DFG-Graduiertenkolleg 357, Effiziente Algorithmen und Mehrskalenmethoden.

237

(c) 2004 IFIP

Related results. It is well-known that the knapsack problem is just weakly
NP-hard [Garey and Johnson, 1979], and admits an FPTAS [Kellerer et al.,
2004; Lawler, 1979]. In contrast, already the problem of packing squares with
unit weights into a rectangle is strongly NP-hard [Baker et al., 1983]. So, the
problem of packing rectangles with weights into a rectangleadmits no FPTAS,
unlessP = NP.

From another side, one can also find a relation to strip packing: Given a
list L of rectanglesRi (i = 1; : : : ; n) with widths ai 2 (0; 1℄ and positive
heightsbi � 0 it is required to pack the rectangles ofL into the vertical strip[0; 1℄ � [0;+1) so that the packing height is minimized. In particular, thisalso
defines the problem of packing rectangles into a rectangle offixed width and
minimum height, or the well-known two-dimensional cuttingstock problem [
Gilmore and Gomory, 1965].

Of course, the strip packing problem is strongly NP-hard since it includes
the bin packing problem as a special case. In fact many known simple strip
packing ideas come from bin packing. The "Bottom-Left" heuristic has asymp-
totic performance ratio equal to2 when the rectangles are sorted by decreasing
widths [Baker et al., 1980]. In [Coffman et al., 1980] several simple algo-
rithms were studied where the rectangles are placed on "shelves" using one-
dimensional bin-packing heuristics. It was shown that the First-Fit shelf algo-
rithm has asymptotic performance ratio of1:7 when the rectangles are sorted
by decreasing height (this defines the First-Fit-Decreasing-Height algorithm).
The asymptotic performance ratio of the best heuristic was further reduced to3=2 [Sleator, 1980], then to4=3 [Golan, 1981] and to5=4 [Baker et al., 1981].
Finally, in [Kenyon and R«emila, 1996] it was shown that there exists an asymp-
totic FPTAS in the case when the side lengths of all rectangles in the list are
at most1. (In the above definitionai; bi 2 (0; 1℄ for all Ri.) For the absolute
performance, the two best current algorithms have the same performance ratio2 [Schiermeyer, 1994; Steinberg, 1997].

In contrast to knapsack and strip packing there are just few results known for
packing rectangles into a rectangle. For a long time the onlyknown result has
been an asymptotic(4=3)-approximation algorithm for packing unweighted
squares into a rectangle [Baker et al., 1983]. Only very recently in [Jansen and
Zhang, 2004], several first approximability results have been presented for the
packing rectangles with weights into a rectangle. The best one is a(2 + ")-
approximation algorithm.

Our results. In this paper we consider the case of so-called large resources,
when the number of packed rectangles is relatively large. Formally, in the
above formulation it is assumed that all rectanglesRi (i = 1; : : : ; n) in the
list L have widths and heightsai; bi 2 (0; 1℄, and the dedicated rectangleR
has unit widtha = 1 and quite a large heightb � 1="4, for a fixed positive

238

(c) 2004 IFIP

" > 0. We present an algorithm which finds a sublistL0 � L of rectangles and
its packing into the dedicated rectangleR with weight at least(1 � ")OPT,
whereOPT is the optimum weight. The running time of the algorithm is
polynomial in the number of rectanglesn.

Our approach to approximation is as follows. At the beginning we take
an optimal rectangle packing inside of the dedicated rectangle, considering
it as a strip packing. We then perform several transformations that simplify
the packing structure, without dramatically increasing the packing height and
decreasing the packing weight, such that the final result is amenable to a fast
enumeration. As soon as such a ”near-optimal” strip packingis found, we
apply our shifting technique. This puts the packing into thededicated rectangle
by removing some less weighted piece of the packing.

Interestingly, by considering a weekly restricted case we are able to achieve
the best possible approximation ratio. This makes a significant step in under-
standing of approximation properties of the problem. Furthermore, the differ-
ence in the side lengths of the dedicated rectangle and the rectangles in the list
yields that the number of packed rectangles is large, that can be met quite often
in practice. In order to be able to cope with the problem we also design several
new approximation techniques, some of them are nice combinations of various
classical techniques from knapsack and strip packing. Thisdemonstrates quite
a strong relation between several variants of packing.

Applications. There recently has been increasing interest in the adver-
tisement placement problem for newspapers and the Internet[Adler et al.,
1998; Freund and Naor, 2002]. In a basic version of the problem, we are given
a list ofn advertisements andk identical rectangular pages of fixed size(a; b),
on which advertisements may be placed. Eachith advertisement appears as a
small rectangle of size(ai; bi), and is associated with a profitpi (i = 1; : : : ; n).
Advertisements may not overlap. The goal is to maximize the total profit of
the advertisements placed on allk pages.

This problem is also known as the problem of packingnweighted rectangles
into k identical rectangular bins. Here, as an application of our algorithm, we
provide a(2 + ")-approximation algorithm. The running time of the algorithm
is polynomial inn for any fixed" > 0.

Last notes. The paper is organized as follows. In section 1 we introduce
notations and give some preliminary results. In Section 2, we present our shift-
ing technique. In Section 3 we perform packing transformations. In Section 4
we outline the algorithm. Finally, in the last section we give an approximation
algorithm to pack rectangles intok rectangular bins of size(a; b). Due to space
limitations, some of the proofs are omitted.

239

(c) 2004 IFIP

1. Preliminaries

We are given a dedicated rectangleR of unit widtha = 1 and heightb � 0,
and a listL of rectanglesRi (i = 1; : : : ; n) with widthsai 2 (0; 1℄, heightsbi 2 (0; 1℄, and positive integral weightswi. The goal is to find a sublist of
rectanglesL0 � L and its packing inR which maximizes the weight of packed
rectangles, i.e.,

PRi2L0 wi.
We will use the following notations. For a sublist of rectangles L0 � L,

we will write weight(L0), height(L0), andsize(L0) to denote the values ofPRi2L0 wi; PRi2L0 bi, and
PRi2L0 ai � bi, respectively. Also, we will writeLopt � L to denote an optimal sublist of rectangles, andOPT to denote the

optimal objective value. Thus,weight(Lopt) = OPT andsize(Lopt) � a�b =b. Throughout of the paper we assume that0 < " < 1=210, 1="0 = (2 + ")="
is integral ("0 = "=(2 + ")), m = 1=("0)2, and the height valueb � 1="4.

1.1 Separating rectangles

Given a positive"0 > 0, we partition the listL of rectangles into two sub-
lists: Lnarrow, containing all the rectangles of width at most"0, andLwide,
containing all the rectangles of width larger than"0.
1.2 Knapsack

In the knapsack problem we are given a knapsack capacityB and a set of
itemsI = f1; 2; : : : ; ng, where each itemi 2 I is associated with its sizesi
and profitpi. It is required to find a subsetI 0 � I which maximizes the profit
of
Pi2I0 pi subject to

Pi2I0 si � B, i.e., it fits in a knapsack of sizeB.
The knapsack problem is NP-hard, but it admits an FPTAS [Garey and John-

son, 1979]. In particular, we can use any FPTAS version from [Kellerer et al.,
2004; Lawler, 1979]. Given a precisionÆ > 0, the algorithm outputs a subsetI(B) � I such thatXi2I(B) si � B and

Xi2I(B) pi � (1� Æ)OPT(I;B); (1)

whereOPT(I;B) is the maximum profit ofI with respect to capacityB. For
simplicity, we will writeKS(n; Æ) to denote the running time of the algorithm,
which is polynomial in the number of itemsn and1=Æ.
1.3 Solving knapsacks with wide and narrow rectangles

We order all the wide rectangles inLwide by non-increasing widths. W.l.o.g.
we assume that there aren0 wide rectanglesR1 = (a1; b1),R2 = (a2; b2); : : : ;Rn0 = (an0 ; bn0) with widths a1 � a2 � : : : � an0 � "0. So, for any two1 � k < ` � n0, let Lwide(k; `) denote the list of all wide rectanglesRi in

240

(c) 2004 IFIP

Lwide with ` � i � k. Here we work with rectangles as items. However,
we treat narrow and wide rectangles differently. For wide rectangles, we only
pay attention to the height values. For narrow rectangles, however, we only
pay attention to the size values. By solving knapsack problems, we get the
following result.Lemma 1 LetH andS be some positive variables. LetLwide(k; `) be the list
of wide rectangles betweenRk andR`. LetLnarrow be the list of all narrow
rectangles. Then, inO(KS(n; "2) time we can find

a sublistLwide(k; `;H) � Lwide(k; `) such that the height ofLwide(k; `;H) is at mostH andweight(Lwide(k; `;H)) � (1� "2=4)OPT(Lwide(k; `);H);
whereOPT(Lwide(k; `);H) is the maximum weight of a subset ofLwide(k; `) with a total height at mostH.

a sublistLnarrow(S) � Lnarrow such that the size ofLnarrow(S) is at
mostS andweight(Lnarrow(S)) � (1� "2=4)OPT(Lnarrow; S);
whereOPT(Lnarrow; S) is the maximum weight of a subset ofLnarrow
with area at mostS.

1.4 Packing narrow rectangles: NFDH

We consider the following strip-packing problem: Given a sublist L0 �Lnarrow of narrow rectangles and a strip with fixed width1 � (2 [0; 1℄)
and unbounded height, pack the rectangles ofL0 into the the strip such that the
height to which the strip is filled is as small as possible.

First, we order the rectangles ofL0 by decreasing heights. Then, we put the
narrow rectangles into the strip-packing by using Next-Fit-Decreasing-Height
(NFDH): The rectangles are packed so as to form a sequence of sublevels. The
first sublevel is just the bottom line of the strip. Each subsequent sublevel is
defined by a horizontal line drawn through the top of the rectangle placed on
the previous sublevel. Rectangles are packed in a left-justified greedy manner,
until there is insufficient space to the right to place the next rectangle, at that
point, the current sublevel is discontinued, the next sublevel is defined and
packing proceeds on the new sublevel. For an illustration see Fig. 1.

We will use the following simple result.Lemma 2 LetL0 � Lnarrow be any sublist of narrow rectangles ordered by
non-increasing heights. If the Next-Fit-Decreasing-Height (NFDH) heuristic
outputs a packing of heightNFDH(L0), then the area covered by the narrow
rectanglesAREA � (1 � � "0)(NFDH(L0)� 1).

241

(c) 2004 IFIP

h1 "01� � "0
NFDH(L0)h4h3h2

Figure 1. NFDH for narrow rectangles

1.5 Strip packing by KR-algorithm

We consider the following strip-packing problem: Given a sublist L0 �L of rectangles and a strip with unit width and unbounded height, pack the
rectangles ofL0 into the the strip such that the height to which the strip is filled
is as small as possible.

As we mentioned before the strip packing problem admits an asymptotic
FPTAS. We will use the following result.Theorem 3 (Kenyon and R�emila, 1996) There is an algorithmA
which, given an accuracy" > 0, a sublistL0 � L of rectangles and a strip
with unit width1 and unbounded height, packs the rectangles ofL0 into the the
strip such that the height to which the strip is filledA(L0) � (1 + ")strip(L0) +O(1="2); (2)

wherestrip(L0) denotes the height of the optimal strip packing ofL0. The
running time ofA is polynomial inn and1=".
For simplicity, we name such an algorithm in the theorem by the KR-algorithm.
Also, we will writeKR(n; ") to denote its running time. In Section 3 we will
give more details on packing by the KR-algorithm.

2. Shifting

Assume that we are given a strip packing of height(1 +O("))b for a list of
rectangles whose weight is at least(1 � O("))OPT. The idea of our shifting
technique is to remove some less weighted piece of heightO(")b. Then, the
weight value remains(1�O("))OPT, but the height value reduces tob. This
fits into the area of the dedicated rectangleR = (a; b).

242

(c) 2004 IFIP

Lemma 4 Suppose we are given a strip packing of height(1 + Æ2)b for a
sublistL0 � L with weight at least(1� Æ1)OPT , for someÆ1; Æ2 � O("). If� 1Æ1� � �(1 + Æ2) + 2Æ2 � b+ 2 � ; (3)

then inO(n+1=") time we can find a rectangle packing of a sublist ofL0 into
the area of the dedicated rectangleR = (a; b) with the weight value at least(1� 3Æ1)OPT.

3. Transformations of optimal solution

Here we discuss some transformations which simplify the structure of the
optimal solutionLopt. We start with transforming a packing ofLopt into a well
structured packing. This introduces the listsLoptwide of wide rectangles,Loptnarrow
of narrow rectangles, andm optimal threshold rectangles. Next, assuming
them threshold rectangles and them height capacity values are known, we
perform a transformation of the optimal listsLoptwide andLoptnarrow to some lists
found by solving a series of knapsacks. Then, we perform a rounding transfor-
mation which turns all them height capacity values to some discrete points.
Each of these transformations may increases the height value byO("b), and
may decrease the weight value byO("OPT). However, in the next section we
show thatLopt can be still approximated with quite a good precision.

3.1 Well-structured packing

Here we describe a well structured packing of the optimal solution.

Separation. LetLopt be the optimal solution. We define the lists of narrow
and wide rectangles:Loptnarrow = Lopt \ Lnarrow andLoptwide = Lopt \ Lwide.
Clearly,weight(Loptwide) + weight(Loptnarrow) = OPT.

Threshold rectangles. LetRk1 = (ak1 ; bk1); Rk2 = (ak2 ; bk2); : : : ; Rkm =(akm ; bkm) be a sequence of optimal wide rectangles inLoptwide such that1 �k1 < k2 < : : : < km � n0. Then, we call such rectangles as the threshold
rectangles. As it is defined, widthsak1 � ak2 � : : : � akm � "0.
Configurations. Now we can define configurations. A configuration is
defined as a multi-set of widths chosen among them threshold widths infaki ji = 1; : : : ;mg which sum to at most1, i.e. they may occur at the same
level. Their sum is called the width of the configuration.

Layers. Let q be some positive integer. LetC1; C2; : : : ; Cq be some distinct
configurations, numbered by non-increasing widths, and letCq+1 be an empty

243

(c) 2004 IFIP

configuration. Let�ij denote the number of occurrences of widthaki in Cj .
Then, the value ofj = Pmi=1 ak(ij)�ij is called the width ofCj. Therefore,1 � 2 � : : : � q � q+1 = 0.

Qj
a) "0

l2l3l1
l0Q01

Q02 Q3
Q1
Q2

1
aki aki�ijakiaki Q0j

b)j
`j+1`j

Figure 2. a) A well structured packing with 3 layers; b) Structure of layer [0; 1℄� [`j ; `j+1℄
Let 0 = `0 � `1 � : : : � `q � `q+1 = h be someq + 1 non-negative

values. We defineq + 1 layers as follows. The layer[0; 1℄ � [`j; `j+1℄ (j =0; : : : ; q+1) corresponds to configurationCj. It is divided into two rectangles:Qj = [j ; 1℄�[`j ; `j+1℄ andQ0j = [0; j ℄�[`j ; `j+1℄. (Notice that the last layer
isQq+1 = [0; 1℄ � [`q; `q+1℄, as shown in Fig. 2a)

From one side, allQj (j = 1; : : : ; q + 1) are empty. From another side,
eachQ0j (j = 1; : : : ; q) consists ofm vertical multi-slices, eachith of those
with exactly�ij identical slices of widthaki , as shown in Fig. 2b. The value of(`j+1 � `j) defines the height of configurationCj, and the value ofh = `q+1
defines the packing height. The value ofHi =Pqj=1 �ij(`j+1�`j) defines the
total height of all slices of widthaki , and it is called theith threshold capacity.

Well-structured packing. A strip packing of the optimal solutionLopt is
called a well-structured strip packing withq+1 layers if allQj (j = 1; : : : ; q+1) are filled by narrow rectangles, and all the slices of widthaki (i = 1; : : : ;m)
are greedily filled by the wide rectangles fromLopt\Lwide(ki; ki+1�1). (Here
and further we assume w.l.o.g. thatkm+1� 1 = n0.) Now we are ready to give
the following result.Theorem 5 (Kenyon and R�emila, 1996) There exists a well-structured
packing ofLopt with 2m+1 layers such that its heighth � maxfstrip(Loptwide)

244

(c) 2004 IFIP

(1+1=(m"0))+2m+1; size(Lopt)(1+1=(m"0))=(1� "0)+4m+1g, wherestrip(Loptwide) is the height of the optimal strip packing ofLoptwide.
3.2 Augmentation

Now we can give the following simple result.Lemma 6 If "0 = "=(2 + "), m = (1="0)2, " < 1=210 and b � 1="4, then
there exists a well-structured packing with2m+1 layers of the optimal solutionLopt of heighth � (1 + 2")b.
3.3 Approximating wide rectangles

Our idea is to guess most profitable rectangles, knowing the optimal thresh-
old rectangles and capacity values. LetRki andHi (i = 1; : : : ;m) be the
optimal ith threshold rectangle and capacity, respectively. Then, by solving a
series of knapsacks we can find the listsLwide(ki; ki+1�1;Hi) of wide rectan-
gles. These are quite good approximations for listsLwide(ki; ki+1� 1)\Lopt,
and hence all together they give a good approximation of the optimal listLoptwide
of wide rectangles.Lemma 7 The value ofmXi=1 weight(Lwide(ki; ki+1 � 1;Hi)) � (1� "2=4)weight(Loptwide): (4)

If the wide rectangles ofLoptwide are replaced by the rectangles of all listsLwide(ki; ki+1�1;Hi) (i = 1; : : : ;m), then the heighth of the well-structured
packing increases by at most�wide � "b.
Proof. As it was defined,Lwide(ki; ki+1 � 1) \ Lopt � Lwide(ki; ki+1 � 1).
In the well structured packing, the rectangles ofLwide(ki; ki+1 � 1) \ Lopt
are placed in the slices of widthaki . The total height of all these slices is
exactly the value ofHi. So,height(Lwide(ki; ki+1� 1)\Lopt) � Hi. Hence,
by Lemma 1 solvingm knapsack problems we can decrease the weight by at
most some factor of(1� "2=4).

Notice that bothLwide(ki; ki+1 � 1;Hi) andLwide(ki; ki+1 � 1) \ Lopt
have quite similar characteristics. We use it as follows. Wetake the well-
structured packing ofLopt and go over all the rectanglesQ01; Q02; : : : ; Q02m in
the2m layers. Inside all the slices of widthsaki (i = 1; : : : ;m) we replace the
rectangles ofLwide(ki; ki+1 � 1) \Lopt by the rectangles ofLwide(ki; ki+1 �1;Hi) in a greedy manner.

Since we greedily place rectangles, it may happen that some rectangles do
not fit completely into the slices. We then increase the height of each layer by1, that must create enough space for all rectangles. Since there are2m layers,

245

(c) 2004 IFIP

the heighth increases by at most�wide � 2m � "b, for " < 1=210 andb � 1="4. The result of lemma follows.

3.4 Approximating narrow rectangles

We use a similar idea to guess most profitable narrow rectangles, know-
ing the optimal configurations with heights and widths. Letj and `j (i =1; : : : ; 2m+ 1) be the width and height of configurationCj , respectively. Re-
call that the optimal narrow rectangles ofLoptnarrow are placed in rectanglesQ1; Q2; : : : ; Q2m; Q2m+1. Hence we can bound the size valuesize(Loptnarrow) � 2m+1Xj=1 (1� j)(`i+1 � `i): (5)

So, by solving the knapsack problem we can find the listLnarrow(S) of
narrow rectangles, where the value of knapsack capacityS = 2m+1Xj=1 (1� j)(`j+1 � `j): (6)

This is a good approximation of the optimal listLoptnarrow of narrow rectangles.Lemma 8 The value ofweight(Lnarrow(S)) � (1�"2=4)weight(Loptnarrow).
If the narrow rectangles ofLoptnarrow are replaced by the narrow rectanglesLnarrow(S), then the heighth of the well-structured packing increases by at
most�narrow � 2"b.
Proof. Clearly, the rectangles ofLoptnarrow must be inLnarrow. By (5), the area
of Loptnarrow is at mostS. Hence, by Lemma 1 solving the knapsack problem
can only decrease the weight by some factor of(1 � "2=4). So, we get the
weight at least(1� "2=4)weight(Loptnarrow).

Notice that bothLoptnarrow andLnarrow(S) have quite similar characteristics.
We use it as follows. We go over the rectanglesQ1; Q2; : : : ; Q2m; Q2m+1 in
the 2m + 1 layers, and place the rectangles ofLnarrow(S) by using NFDH.
If not all rectangles are placed, then we work with a new layerof width 1 and
height�narrow.

The new rectangle has width1 and height�narrow. Similar to Lemma 2, the
area covered by narrow rectangles in additional layer is at least(1�"0)(�narrow�1). Similarly, consider the narrow rectangles packed in rectangle Qj (j =1; : : : ; 2m+1). The height of this packing is at least`j+1� `j� 1. The width
of Qj is 1 � j . Hence, the area covered by the narrow rectangles is at least(1� j � "0)(`j+1 � `j � 2). Combining over all layers, the area covered is at
least

P2m+1j=1 (1� j � "0)(`j+1 � `j � 2) + (1� "0)(�narrow � 1).

246

(c) 2004 IFIP

Recall that the area ofLoptnarrow(S) is at mostS =P2m+1j=1 (1�j)(`j+1�`j).
We need an upper bound on the value of�narrow. So, it is enough to require
that this size value is equal to the above bound. So,

P2m+1j=1 (1�j�"0)(`j+1�`j � 2) + (1 � "0)(�narrow � 1) � P2m+1j=1 (1 � j)(`j+1 � `j). Hence,(1� "0)(�narrow � 1) � 2P2m+1j=1 (1� j � "0) + "0P2m+1j=1 (`j+1 � `j) and

from
P2m+1j=1 (`j+1 � `j) = h�narrow � 1 + [2 2m+1Xj=1 (1� j � "0) + "0 � h℄=(1 � "0) � 2"b

for " < 1=210, m = 1=("0)2, "0 = "=(2 + ") andb � 1="4. The result of
lemma follows.

3.5 Rounding

Finally, we round all values to some discrete points.Lemma 9 If we round up each threshold capacityHi (i = 1; : : : ;m) inLwide(ki; ki+1 � 1;Hi) to the the closest value inCAPACITY = ft � ("0)4 � bjt = 1; 2; : : : ; 1=("0)6g;
and the value ofS in Lnarrow(S) to the closest value inSIZE = ft � ("0)4 � bjt = 1; 2; : : : ; 1=("0)5g;
then the heighth of the well-structured packing increases by at most�rounding � "b.
Proof. Consider a well structured packing of allLwide(ki; ki+1 � 1;Hi) andLnarrow(S) with 2m+1 layers. Each layer is cut into slices which correspond
to a configuration. The wide rectangles ofLwide(ki; ki+1 � 1;Hi) are packed
in the slices of widthaki in a greedy manner. The rectangles ofLnarrow(S)
are packed by the NFDH heuristic. The height of the packing ish+�wide +�narrow � (1 + 5")b:

By rounding, we increase the value of eachHi andS by at most("0)4b.
Hence, in solving knapsacks the height ofLwide(ki; ki+1 � 1;Hi) increases
by at most("0)4b, and the area ofLnarrow(S) increases by at most("0)4b.
Next, we proceed as in approximating wide and narrow rectangles. We go over
all slices of widthaki and replace all old wide rectangles by the new wide
rectangles inLwide(ki; ki+1 � 1;Hi). Also, we go over all layers and replace
all old narrow rectangles by the new narrow rectangles inLnarrow(S).

247

(c) 2004 IFIP

In order to accommodate all of wide and narrow rectangles we need to in-
crease the heights of some layers (configurations). We can estimate the total
increase as follows. First, we increase the height value of each layer (configu-
ration) by("0)4b. Then, similar to approximating wide and narrow rectangles,
we can pack all the rectangles, but cutting them if they do notfit into slices or
layers. Since the height value of any rectangle is at most1, we simply increase
the height of each layer by1. This eliminates cuts. In overall, we can estimate
the total increase as�rounding � (2m+ 1)[("0)4b+ 1℄ = O("2b) � "b;
for m = 1=("0)2, "0 = "=(2 + "), " � 1=210 andb � 1="4.

The height of the final packing is at most(1+5")b+�rounding = (1+6")b.
This means that the size of allLwide(ki; ki+1 � 1;Hi) andLnarrow(S) is at
most(1+6")b. Hence, after rounding the value ofS is at most(1+6")b � b="0.
Since the width value of the rectangles inLwide(ki; ki+1� 1;Hi) is at least"0,
after rounding the value ofHi can be at most(1 + 6")b="0 � b=("0)2. Thus,
the value oft in CAPACITY andSIZE can be at most1=("0)5 and1=("0)6,
respectively. The result of lemma follows.

4. Overall algorithm

Here we outline our algorithm and summarize all above results. We simply
enumerate all possible sequences of threshold rectangles and their capacity
values. Then, we solve a series of knapsack problems to get several lists of
wide and narrow rectangles, and find a packing for them by using the KR-
algorithm. At the end, we select the most profitable packing and apply the
shifting technique to it. The final packing fits into the dedicated rectangle and
its weight is near-optimal.
Rectangle Packing (RP):
Input: List L, accuracy" > 0, and"0 = "=(2 + "), m = 1=("0)2.

1 Split L into Lnarrow andLwide of narrow and wide rectangles, whose
widths are at most"0 and larger than"0;

2 Sort the wide rectangles ofLwide according to their widths;

3 For each sequence ofm = (1="0)wide threshold rectanglesRk1 ,Rk2 ; : : : ;Rkm fromLwide:
(a) selectm capacity values ofHi 2 CAPACITY and a value ofS 2 SIZE;

(b) findm listsLwide(ki; ki+1 � 1;Hi) and listLnarrow(S);
(c) run the KR-algorithm and keep the solution (if it’s height is at most(1 + 16")b).

248

(c) 2004 IFIP

4 Select a packing whose weight is maximum;

5 Apply the shifting technique.

We conclude with the following final result.Theorem 10 TheRP-algorithm outputs a rectangle packing of a sublistL0 � L in the area[0; a℄ � [0; b℄ of the dedicated rectangleR. The weight of
the packingweight(L0) � (1�")OPT, whereOPT is the optimal weight. The
running time of theRP-algorithm is bounded byO(n1="2(1="6)1="2+1[KS(n; ")�KR(n; ")℄), whereKS(n; ") is the running time of a FPTAS for solving the
knapsack problem, andKR(n; ") is the running time of the KR-algorithm.

5. Packing intok rectangular bins

Here we consider the problem of packing weighted rectanglesinto k bins.
Given k identical bins of size(a; b) and a listL of n rectanglesRi (i =1; : : : ; n) with widths ai 2 (0; a℄, heightsbi 2 (0; b℄, and positive integral
weightswi. The goal is to find a sublistL0 � L of rectangles and its packing
into k bins such that the total weight of packed rectangles is maximized. We
present the following algorithm:
Algorithm k-Bins:
Input: List L, accuracy" > 0, k bins of size(a; b).

Case 1.k � O(1="4). Use a(2 + ")-approximation algorithm, that gener-
alizes an approximation algorithm for one bin [Jansen and Zhang, 2004] to a
constant number of bins (for the details we refer to a full version of this paper).

Case 2.k > O(1="4).
1 Take allk bins together to get the rectangle(a; kb).
2 Apply our algorithm with the PTAS to pack a subset of rectangles into

a larger rectangle(a; kb), that gives us a packing with the total profit� (1� ")OPT.

3 Take the current rectangle packing. Draw(k � 1) vertical lines which
divide the packing intok bins.

4 Split this packing into 2 solutions:

(a) solution, which contains all rectangles which lie inside of each bin.

(b) solution, which contains all rectangles which intersect any dividing
line between two bins.

5 Take the solution which has the highest profit.

249

(c) 2004 IFIP

We can conclude with the following result.Theorem 11 The algorithmk-Bins is a(2+")-approximation algorithm. Its
running time is polynomial in the number of rectanglesn for any fixed" > 0.

References
Adler, M., Gibbons, P., and Matias, Y. (1998). Scheduling space-sharing for internet advertising.

Journal of Scheduling (to appear).
Baker, B., Brownand, D., and Katseff, H. (1981). A 5/4 algorithm for two dimensional packing.

J. of Algorithms, 2:348–368.
Baker, B., Calderbank, A., Coffman, E., and Lagarias, J. (1983). Approximation algorithms for

maximizing the number of squares packed into a rectangle.SIAM Journal on Algebraic and
Discrete Methods, 4:383–397.

Baker, B., Coffman, E., and Rivest, R. (1980). Orthogonal packings in two dimensions.SIAM
J. Comput., 9:846–855.

Coffman, E., Garey, M., Johnson, D., and Tarjan, R. (1980). Performance bounds for level-
oriented two-dimensional packing algorithms.SIAM J. Comput., 9:808–826.

Freund, A. and Naor, J. (2002). Approximating the advertisement placement problem. InPro-
ceedings of the 9th Conference on Integer Programming and Combinatorial Optimization
(IPCO’02), LNCS 2337, pages 415–424.

Garey, M. R. and Johnson, D. S. (1979).Computers and intractability: A guide to the theory of
NP-completeness. Freeman, San Francisco, CA.

Gilmore, P. and Gomory, R. (1965). Multistage cutting stockproblems of two and more dimen-
sions.Operations Research, 13:94–120.

Golan, I. (1981). Performance bounds for orthogonal, oriented two-dimensional packing algo-
rithms.SIAM J. Comput., 10:571–582.

Jansen, K. and Zhang, G. (2004). On rectangle packing: maximizing benefits. InFifteenth An-
nual Symposium on Discrete Algorithms, pages 197–206.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004).Knapsack problems. Springer.
Kenyon, C. and R«emila, E. (1996). Approximate strip-packing. InThirty-Seventh Annual Sym-

posium on Foundations of Computer Science, pages 31–36.
Lawler, E. (1979). Fast approximation algorithms for knapsack problems.Mathematics of Op-

erations Research, 4:339–356.
Schiermeyer, I. (1994). Reverse fit : a 2-optimal algorithm for packing rectangles.Proceedings

2nd European Symposium on Algorithms, pages 290–299.
Sleator, D. (1980). A 2.5 times optimal algorithm for bin packing in two dimensions.IPL,

(10):37–40.
Steinberg, A. (1997). A strip-packing algorithm with absolute performance bound 2.SIAM Jour-

nal on Computing, 26(2):401–409.

250

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

