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Abstract We study the problem of packing a setrofectangles with weights into a ded-
icated rectangle so that the weight of the packed rectangiemximized. We
consider the case of large resources, that is, the sidehlerfigtll rectangles is
at mostl and the side lengths of the dedicated rectangle differ bytarfaf at
least1/e*, for a fixed positives > 0. We present an algorithm which finds a
rectangle packing of weight at leadt{ <) of the optimum in time polynomial
in n. As an application we show(@ + ¢)-approximation algorithm for packing
weighted rectangles intbrectangular bins of sizgu, b).

Keywords:  Rectangle packing, approximation algorithms

Introduction

We address the following problem of packing rectangles wiglights into
a rectangle. We are given a dedicated rectaigte width « > 0 and height
b > 0, and a listL of n rectanglesR; (i = 1,... ,n) with widthsa; € (0, a],
heightsb; € (0,b], and positive integral weights;. For a sublistZ,’ C L of
rectangles, @ackingof L’ into the dedicated rectangl® is a positioning of
the rectangles froni’ within the ared0, a] x [0, b], so that all the rectangles
of L' have disjoint interiors. Rectangles are not allowed toteotdhe goal is
to find a sublist of rectangles’ C L and its packing inR which maximizes
the weight of packed rectangles, .8 ./ wi.

The above problem is a natural generalization of the kn&pgeablem to
the two-dimensional version.

*Supported by EU-Projekt CRESCCO, Critical Resource Spaian Cooperation in Complex Systems,
IST-2001-33135, by EU Thematic Network APPOL, Approxiroatiand Online Algorithms, IST-2001-
30012 and by DFG-Graduiertenkolleg 357, Effiziente Aldorien und Mehrskalenmethoden.
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Related results. It is well-known that the knapsack problem is just weakly
NP-hard [Garey and Johnson, 1979], and admits an FPTASdi¢elkt al.,
2004; Lawler, 1979]. In contrast, already the problem ofkprag squares with
unit weights into a rectangle is strongly NP-hard [Bakerlet1®83]. So, the
problem of packing rectangles with weights into a rectaaglenits no FPTAS,
unlessP = NP.

From another side, one can also find a relation to strip pgck@iven a
list L of rectanglesR; (i = 1,...,n) with widthsa; € (0, 1] and positive
heightsh; > 0 it is required to pack the rectangles bfinto the vertical strip
[0,1] x [0, +0c) so that the packing height is minimized. In particular, Hig
defines the problem of packing rectangles into a rectangfixed width and
minimum height, or the well-known two-dimensional cuttistpck problem [
Gilmore and Gomory, 1965].

Of course, the strip packing problem is strongly NP-hardssiit includes
the bin packing problem as a special case. In fact many kninvple strip
packing ideas come from bin packing. The "Bottom-Left" h&tio has asymp-
totic performance ratio equal fowhen the rectangles are sorted by decreasing
widths [Baker et al., 1980]. In [Coffman et al., 1980] seVesimple algo-
rithms were studied where the rectangles are placed onv&gielising one-
dimensional bin-packing heuristics. It was shown that tinstfFit shelf algo-
rithm has asymptotic performance ratiolof when the rectangles are sorted
by decreasing height (this defines the First-Fit-Decrepbisight algorithm).
The asymptotic performance ratio of the best heuristic wabér reduced to
3/2 [Sleator, 1980], then td/3 [Golan, 1981] and t&/4 [Baker et al., 1981].
Finally, in [Kenyon and Rmila, 1996] it was shown that there exists an asymp-
totic FPTAS in the case when the side lengths of all rectanglehe list are
at mostl. (In the above definitiom;, b; € (0, 1] for all R;.) For the absolute
performance, the two best current algorithms have the saniermance ratio
2 [Schiermeyer, 1994; Steinberg, 1997].

In contrast to knapsack and strip packing there are justéswits known for
packing rectangles into a rectangle. For a long time the knbyvn result has
been an asymptoti¢4/3)-approximation algorithm for packing unweighted
squares into a rectangle [Baker et al., 1983]. Only veryrigén [Jansen and
Zhang, 2004], several first approximability results haverbgresented for the
packing rectangles with weights into a rectangle. The bestis a(2 + ¢)-
approximation algorithm.

Ourresults.  Inthis paper we consider the case of so-called large ressurc
when the number of packed rectangles is relatively largermBlly, in the
above formulation it is assumed that all rectanglgs(i = 1,... ,n) in the
list L have widths and heights;, b; € (0, 1], and the dedicated rectangie
has unit widtha = 1 and quite a large heiglit > 1/¢%, for a fixed positive
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e > 0. We present an algorithm which finds a subli$tC L of rectangles and
its packing into the dedicated rectandtewith weight at leas(1 — ¢)OPT,
where OPT is the optimum weight. The running time of the algorithm is
polynomial in the number of rectangles

Our approach to approximation is as follows. At the begignive take
an optimal rectangle packing inside of the dedicated rgi¢arconsidering
it as a strip packing. We then perform several transformatitnat simplify
the packing structure, without dramatically increasing placking height and
decreasing the packing weight, such that the final resulinisnable to a fast
enumeration. As soon as such a "near-optimal” strip packsnfpund, we
apply our shifting technique. This puts the packing intodbdicated rectangle
by removing some less weighted piece of the packing.

Interestingly, by considering a weekly restricted case mgeahle to achieve
the best possible approximation ratio. This makes a sigmifistep in under-
standing of approximation properties of the problem. Femifore, the differ-
ence in the side lengths of the dedicated rectangle and ¢tenigdes in the list
yields that the number of packed rectangles is large, threbbeanet quite often
in practice. In order to be able to cope with the problem we désign several
new approximation techniques, some of them are nice coribirsaof various
classical techniques from knapsack and strip packing. dédmisonstrates quite
a strong relation between several variants of packing.

Applications.  There recently has been increasing interest in the adver-
tisement placement problem for newspapers and the Int¢fAakér et al.,
1998; Freund and Naor, 2002]. In a basic version of the problee are given

a list of n advertisements andidentical rectangular pages of fixed sizeb),

on which advertisements may be placed. Edblradvertisement appears as a
small rectangle of siz@u;, b;), and is associated with a profit(: = 1, ... , n).
Advertisements may not overlap. The goal is to maximize thal fprofit of

the advertisements placed on &albages.

This problem is also known as the problem of packingeighted rectangles
into & identical rectangular bins. Here, as an application of dgwrahm, we
provide a(2 + ¢)-approximation algorithm. The running time of the algamith
is polynomial inn for any fixede > 0.

Last notes. The paper is organized as follows. In section 1 we introduce
notations and give some preliminary results. In Section&present our shift-
ing technique. In Section 3 we perform packing transforameti In Section 4
we outline the algorithm. Finally, in the last section weegan approximation
algorithm to pack rectangles intorectangular bins of sizg:, b). Due to space
limitations, some of the proofs are omitted.
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1. Preliminaries

We are given a dedicated rectangteof unit width e = 1 and height > 0,
and a listL of rectanglesR; (i = 1,... ,n) with widthsa; € (0, 1], heights
b; € (0,1], and positive integral weight®;. The goal is to find a sublist of
rectangled.’ C L and its packing iR which maximizes the weight of packed
rectangles, i.e) p .1 wi.

We will use the following notations. For a sublist of rectlesgl,’ C L,
we will write weight(L'), height(L'), andsize(L') to denote the values of
Y Rier Wis Yog.er bis and S p 1 a; - b, respectively. Also, we will write
L°Pt C L to denote an optimal sublist of rectangles, @&@T to denote the
optimal objective value. Thuseight(L°P') = OPT andsize(LP) < a-b =
b. Throughout of the paper we assume that ¢ < 1/2!°,1/¢' = (2 +¢)/¢
isintegral €' = ¢/(2 + ¢€)), m = 1/(¢')?, and the height valug > 1/¢*.

1.1 Separating rectangles

Given a positives” > 0, we partition the listZ, of rectangles into two sub-
lists: Lyarrow, cOntaining all the rectangles of width at mast and L, 4.,
containing all the rectangles of width larger than

1.2 Knapsack

In the knapsack problem we are given a knapsack capaciyd a set of
items] = {1,2,... ,n}, where each item € I is associated with its sizg
and profitp;. It is required to find a subsét C I which maximizes the profit
of >, pi subject toy ", s; < B, i.e., it fits in a knapsack of sizB.

The knapsack problem is NP-hard, but it admits an FPTAS [fzamd John-
son, 1979]. In particular, we can use any FPTAS version frigali¢rer et al.,
2004; Lawler, 1979]. Given a precisian> 0, the algorithm outputs a subset
I(B) C I such that

Zsngandel_ (1-0)OPT(I,B), @)

i€I(B i€I(B

whereOPT(I, B) is the maximum profit of with respect to capacitys. For
simplicity, we will write K S(n, §) to denote the running time of the algorithm,
which is polynomial in the number of itemsand1/J.

1.3 Solving knapsacks with wide and narrow rectangles

We order all the wide rectangles In,;4. by non-increasing widths. W.l.0.g.
we assume that there atéwide rectangle®; = (a1, b1), Ro = (a2, bs), ... ,
R, = (ay,by) with widthsa; > as > ... > a, > €. So, for any two
1 < k<<, letLyq(k,?) denote the list of all wide rectangld®; in
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Lyige With £ > 4 > k. Here we work with rectangles as items. However,
we treat narrow and wide rectangles differently. For wid#aegles, we only
pay attention to the height values. For narrow rectanglesiekier, we only
pay attention to the size values. By solving knapsack probleve get the
following result.

LEMMA 1 LetH andS be some positive variables. LEf,;4. (&, ¢) be the list
of wide rectangles betweeR, and R;. Let L, .-y D€ the list of all narrow
rectangles. Then, i0(K S(n, e?) time we can find

m asublistLyge(k, ¢, H) C Ly;q(k, £) such that the height of
Lyiqe(k, ¢, H) is at mostH and

weight(Lyige (k, ¢, H)) > (1 — &2 /4)OPT(Lypjae (k. £), H),

whereOPT(Lyiqe (k, £), H) is the maximum weight of a subset of
Lyiqe(k, £) with a total height at mos# .

m a sublistLy,rrow(S) € Lparrow SUch that the size df,qr0n (S) is at
mostS and

weight(Lparrow(S)) > (1 — £2/4)OPT(Lparrow, S),

whereOPT(Lyarrow, S) IS the maximum weight of a subsetiof,, ow
with area at mosf.

1.4 Packing narrow rectangles: NFDH

We consider the following strip-packing problem: Given dl&i L' C
Lyarrow Of Narrow rectangles and a strip with fixed width- ¢ (¢ € [0, 1])
and unbounded height, pack the rectangles’afto the the strip such that the
height to which the strip is filled is as small as possible.

First, we order the rectangles bf by decreasing heights. Then, we put the
narrow rectangles into the strip-packing by using NexitBacreasing-Height
(NFDH): The rectangles are packed so as to form a sequencbleisls. The
first sublevel is just the bottom line of the strip. Each sgjosat sublevel is
defined by a horizontal line drawn through the top of the mgia placed on
the previous sublevel. Rectangles are packed in a leffiacsgreedy manner,
until there is insufficient space to the right to place thetmegtangle, at that
point, the current sublevel is discontinued, the next sidhles defined and
packing proceeds on the new sublevel. For an illustratienFsg. 1.

We will use the following simple result.

LEMMA 2 LetL' C L,q0n b€ any sublist of narrow rectangles ordered by
non-increasing heights. If the Next-Fit-Decreasing-Hei¢NFDH) heuristic
outputs a packing of heighY F D H(L'), then the area covered by the narrow
rectanglesAREA > (1 —c—¢)(NFDH(L') - 1).
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Figure 1. NFDH for narrow rectangles

1.5 Strip packing by KR-algorithm

We consider the following strip-packing problem: Given @i L' C
L of rectangles and a strip with unit width and unbounded heigack the
rectangles of. into the the strip such that the height to which the strip iedil
is as small as possible.

As we mentioned before the strip packing problem admits gmpotic
FPTAS. We will use the following result.

THEOREM 3 (KENYON AND REMILA, 1996) There is an algorithmA
which, given an accuracy > 0, a sublistZ.’ C L of rectangles and a strip
with unit width1 and unbounded height, packs the rectangleg’afto the the
strip such that the height to which the strip is filled

A(L') < (14 ¢)strip(L') + O(1/€?), 2)

where strip(L') denotes the height of the optimal strip packingléf The
running time ofA is polynomial inn and1/e.

For simplicity, we name such an algorithm in the theorem yR-algorithm.
Also, we will write K R(n, €) to denote its running time. In Section 3 we will
give more details on packing by the KR-algorithm.

2. Shifting

Assume that we are given a strip packing of height- O(e))b for a list of
rectangles whose weight is at legst— O(e))OPT. The idea of our shifting
technique is to remove some less weighted piece of héighjb. Then, the
weight value remainél — O(e))OPT, but the height value reduces#oThis
fits into the area of the dedicated rectangle= (a. b).
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LEMMA 4 Suppose we are given a strip packing of height+ d5)b for a
sublistZ’ C L with weight at least1 — d;)OPT, for somejy, d2 =~ O(e). If

1 (14 02) +2
) B
’7(51-‘_\‘ 09 - b+ 2 J’ 3)
then inO(n + 1/¢) time we can find a rectangle packing of a sublisL.6fnto

the area of the dedicated rectangle = (a, b) with the weight value at least
(1 —36,)OPT.

3. Transformations of optimal solution

Here we discuss some transformations which simplify thectire of the
optimal solutionZ°Pt. We start with transforming a packing 6P”¢ into a well
structured packing. This introduces the ”E(%e of wide rectanglesL2% 0w
of narrow rectangles, angh optimal threshold rectangles. Next, assuming
the m threshold rectangles and the height capacity values are known, we
perform a transformation of the optimal list§?",  and L;50u to some lists
found by solving a series of knapsacks. Then, we perform radiog transfor-
mation which turns all then height capacity values to some discrete points.
Each of these transformations may increases the height \®I® (¢b), and
may decrease the weight value ©ysOPT). However, in the next section we
show thatZL°P* can be still approximated with quite a good precision.

3.1 Well-structured packing

Here we describe a well structured packing of the optimalt&mi.

Separation. Let L°P! be the optimal solution. We define the lists of narrow
and wide rectanglesLy?row = L' N Lyarrow @nd L%, = L% O Lyige.
Clearly,weight(l};%e) + weight(L%%inmw) = OPT.

Threshold rectangles. LetRy, = (ag,,bx,), Rk, = (Qkys bky). .. , Rk, =
(ak,, bk, ) be a sequence of optimal wide rectanglesijﬁZe such thatl <

ki < ky < ... <k, < n'. Then, we call such rectangles as the threshold
rectangles. As itis defined, widthg, > a;, > ... > ay, >¢€'.

Configurations.  Now we can define configurations. A configuration is
defined as a multi-set of widths chosen among #thehreshold widths in
{a,li = 1,... ,m} which sum to at most, i.e. they may occur at the same
level. Their sum is called the width of the configuration.

Layers. Letq be some positive integer. L&Y, C, ... , C, be some distinct
configurations, numbered by non-increasing widths, an@/ef be an empty
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configuration. Lety;; denote the number of occurrences of widgh in C;.
Then, the value of; = > 1" | ay(;j)«i; is called the width ofC;. Therefore,
cL>cC2>...2¢cq>cgp1 =0,

if)

Qg

liya

a) b)

Figure 2. a) A well structured packing with 3 layers; b) Structure ofdg]0, 1] x [¢;, £;+1]

Let0 = 4y < 4 < ... < ¢, < {441 = h be someg + 1 non-negative
values. We defing + 1 layers as follows. The layg0,1] x [¢;,4;11] (j =
0,...,g+1)corresponds to configuratiaty,. It is divided into two rectangles:
Qj = [ej, 1x[¢),£541] andQ} = [0, ¢;] x [£;, £;11]. (Notice that the last layer
iS Qq+1 = [0, 1] x [4y,2,41], as shown in Fig. 2a)

From one side, all); ( = 1,... ,¢q + 1) are empty. From another side,
eachQ;- (7 = 1,...,q) consists ofim vertical multi-slices, eaclih of those
with exactly«;; identical slices of widthuy,;, as shown in Fig. 2b. The value of
(¢;41 — ¢;) defines the height of configuratiaty;, and the value of = £,
defines the packing height. The valuef6f = >>7_, «;;(£;11—¢;) defines the
total height of all slices of widtlay,, and it is cafled théth threshold capacity.

Well-structured packing. A strip packing of the optimal solutioh“"! is
called a well-structured strip packing wigh-1 layersifallQ; (j = 1,... ,q+
1) are filled by narrow rectangles, and all the slices of wigth(: = 1, ... ,m)
are greedily filled by the wide rectangles frdf¥' N L ;4 (ki, kiv1—1). (Here
and further we assume w.l.0.g. thigt 1 — 1 = n’.) Now we are ready to give
the following result.

THEOREM 5 (KENYON AND REMILA, 1996) There exists a well-structured
packing ofL°P! with 2m + 1 layers such that its heightt < max{strip(L°% )

wide
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(1+1/(me")) +2m+1, size(LP")(1+1/(me')) /(1 —€') + 4m + 1}, where
strip(L,.) is the height of the optimal strip packing bf”’,. .

3.2 Augmentation
Now we can give the following simple result.

LEMMA 6 If &/ = £/(2 +¢),m = (1/¢)%, ¢ < 1/2'% andb > 1/&*, then
there exists a well-structured packing withn+1 layers of the optimal solution
LoPt of heighth < (1 + 2¢)b.

3.3 Approximating wide rectangles

Our idea is to guess most profitable rectangles, knowingpkienal thresh-
old rectangles and capacity values. Ut andH; (i = 1,...,m) be the
optimalith threshold rectangle and capacity, respectively. Thegrsolving a
series of knapsacks we can find the li&ts 4. (k;, ki+1 — 1, H;) of wide rectan-
gles. These are quite good approximations for lists;. (k;, ki1 — 1) N L%,
and hence all together they give a good approximation of pienal list Lffl.’;e
of wide rectangles.

LEMMA 7 The value of

> weight(Luige (kis ki1 — 1, Hy)) > (1 = €2 [4)weight(LL,).  (4)

wide
=1

If the wide rectangles of?”', are replaced by the rectangles of all lists
Luyige(ki kiz1—1,H;) 1 = 1,... ,m), then the height of the well-structured
packing increases by at moAt,;q. < eb.

Proof. As it was definedeide(ki, kiy1 — 1) N Lopt - Lwide(kia kiy1 — 1)

In the well structured packing, the rectanglesiQfis.(k;, ki1 — 1) N LOPt

are placed in the slices of widtly,,. The total height of all these slices is
exactly the value off;. So,height(Lqyiqge(ki, ki1 — 1) N L) < H;. Hence,

by Lemma 1 solvingn knapsack problems we can decrease the weight by at
most some factor oft — £2/4).

Notice that bOtthide(ki,ki+1 — 1,HZ‘) and Lwide(kia kiy1 — 1) N Lopt
have quite similar characteristics. We use it as follows. tdke the well-
structured packing of.°”* and go over all the rectanglég;, @5, ... , Q5,, in
the2m layers. Inside all the slices of widtlag, (: = 1,... ,m) we replace the
rectangles of;qe (ki, kir1 — 1) N L°P! by the rectangles of,;qe (ki kit1 —

1, H;) in a greedy manner.

Since we greedily place rectangles, it may happen that seoiangles do
not fit completely into the slices. We then increase the haifjeach layer by
1, that must create enough space for all rectangles. Sinoe éne2m layers,
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the heighth increases by at mosk, ;4. < 2m < b, fore < 1/2!% and
b> 1/54. The result of lemma follows.

3.4 Approximating narrow rectangles

We use a similar idea to guess most profitable narrow reaangiow-
ing the optimal configurations with heights and widths. ketnd/; (i =
1,...,2m + 1) be the width and height of configurati@ry, respectively. Re-
call that the optimal narrow rectangles bf%.,.., are placed in rectangles

Q1,Q2, ... ,Qom, Qam+1. Hence we can bound the size value
2m—+1
Size(L?zﬁtrrow) < Z (1- Cj)(giJrl —4). (5)
j=1

So, by solving the knapsack problem we can find the Zligt, 0., (S) of
narrow rectangles, where the value of knapsack capacity

2m+1
S= > (L=c))(ljs1 — ). 6)

j=1
This is a good approximation of the optimal IB%’;?,W of narrow rectangles.
LEMMA 8 The value ofveight(Lyarrow(S)) > (1—e2/4)weight(Laherow).
If the narrow rectangles oL?l’;t,nmw are replaced by the narrow rectangles
Lyarrow(S), then the height. of the well-structured packing increases by at
MOStA,arrow < 2¢b.

Proof. Clearly, the rectangles gi’?t .., must be iNLparrow- BY (B), the area

of LI, is at mostS. Hence, by Lemma 1 solving the knapsack problem
can only decrease the weight by some factoflof- £2/4). So, we get the
weight at least1 — £2/4)weight(Lobkrow).

Notice that both.%2.,..., andL,q,row (S) have quite similar characteristics.
We use it as follows. We go over the rectangigs Qs, . .. , Qam, Q2m+1 IN
the 2m + 1 layers, and place the rectanglesiof,,,o. (S) by using NFDH.

If not all rectangles are placed, then we work with a new layferidth 1 and
heightAnarrow-

The new rectangle has widthand heightA,,4,0.. Similar to Lemma 2, the
area covered by narrow rectangles in additional layer sast{1—&’) (A arrow —
1). Similarly, consider the narrow rectangles packed in reg@Q; (j =
1,...,2m+1). The height of this packing is at leat, | — ¢; — 1. The width
of Q; is 1 — ¢;. Hence, the area covered by the narrow rectangles is at least
(1—¢; —€')(¢j4+1 — ¢; —2). Combining over all layers, the area covered is at

leasty 2" (1 — ¢ — &) (L1 — £ — 2) + (1 — &) (Anarrow — 1).

(c) 2004 IFIP



247

Recall that the area df;;rou (S) is atmosts = 77" (1—¢;) (¢j41—4;).

We need an upper bound on the valueof,, ..., S0, it is enough to require
that this size value is equal to the above bound. 38! (1—c; —&') ()41 —
6 =2) + (1= &) Anarrow — 1) < (1 = ¢;) (441 — £;). Hence,
(1 =) (Anarrow — 1) <2375 (1 — ¢ — ) + &' 7 (4541 — ;) and
from Z?ff’l(ﬁjﬂ — g]) =h

2m+1
Anarrow < 1+ [2 Z (1 —Cj — 8’) +é - h}/(l — 6’) < 2eb
7=1

fore < 1/21% m = 1/(")%, &' = ¢/(2 +¢) andb > 1/*. The result of
lemma follows.

3.5 Rounding

Finally, we round all values to some discrete points.

LEMMA 9 If we round up each threshold capacify; (i = 1,...,m) in
Luyige(ki, kiv1 — 1, H;) to the the closest value in

CAPACITY = {t-()* bt =1,2,... ,1/(")5},
and the value of in L4010 (S) to the closest value in
SIZE ={t- ()" bt =1,2,... ,1/(")°},

then the height of the well-structured packing increases by at most
Arounding < eb.

Proof. Consider a well structured packing of dll,;q.(k;, ki1 — 1, H;) and
Lyarrow(S) With 2m + 1 layers. Each layer is cut into slices which correspond
to a configuration. The wide rectanglesiof;q. (k;, ki+1 — 1, H;) are packed

in the slices of widtha, in a greedy manner. The rectanglesof,,ow (S)

are packed by the NFDH heuristic. The height of the packing is

h + Awide + Anarrow < (1 + 56)(7.

By rounding, we increase the value of eallh and S by at most(¢’)%b.
Hence, in solving knapsacks the heightof;.(k;, ki+1 — 1, H;) increases
by at most(¢')*b, and the area of.,,4r00 (S) increases by at mogt’)*b.
Next, we proceed as in approximating wide and narrow ret¢ang\Ve go over
all slices of widtha,, and replace all old wide rectangles by the new wide
rectangles inLy;q¢ (i, kiz1 — 1, H;). Also, we go over all layers and replace
all old narrow rectangles by the new narrow rectangles,if}.;ow (.S).
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In order to accommodate all of wide and narrow rectangles @&lrio in-
crease the heights of some layers (configurations). We danads the total
increase as follows. First, we increase the height valuacii ¢éayer (configu-
ration) by (¢')*b. Then, similar to approximating wide and narrow rectangles
we can pack all the rectangles, but cutting them if they ddihotto slices or
layers. Since the height value of any rectangle is at mose simply increase
the height of each layer by, This eliminates cuts. In overall, we can estimate
the total increase as

Around'ing < (2m + 1)[(6,)4b+ 1] = O(&‘Qb) < &b,

form=1/(c")2,e =¢/(2+¢),e < 1/2'%andb > 1/*.

The height of the final packing is at mqst+ 5¢)b+ A, ounding = (14 6¢)b.
This means that the size of dll,;qe(k;, ki1 — 1, H;) and Lygrron (S) is at
most(1+6¢)b. Hence, after rounding the value $fs at most{(1+6¢)b < b/e’.
Since the width value of the rectangleslip;. (k;, ki+1 — 1, H;) is at least’,
after rounding the value off; can be at mostl + 6¢)b/e’ < b/(¢')?. Thus,
the value of in CAPACITY andSIZFE can be at most/(¢')® and1/(g')S,
respectively. The result of lemma follows.

4. Overall algorithm

Here we outline our algorithm and summarize all above resMlie simply
enumerate all possible sequences of threshold rectangteshair capacity
values. Then, we solve a series of knapsack problems to getasdists of
wide and narrow rectangles, and find a packing for them bygutie KR-
algorithm. At the end, we select the most profitable packind apply the
shifting technique to it. The final packing fits into the dedexd rectangle and
its weight is near-optimal.

Rectangle Packing (RP)
Input: List L, accuracy > 0, ande’ = ¢/(2 +¢),m = 1/(¢')%

1 Split L into Lyarrow @nd Lyiqe Of narrow and wide rectangles, whose
widths are at most’ and larger tham’;

2 Sort the wide rectangles @f,;4. according to their widths;

3 Foreach sequencewf = (1/¢') wide threshold rectangle®, ,Ry,, - - -
Ry, from Ly;qe:

)

(a) selectm capacity values ofHf; € CAPACITY and a value of
SeSIZE;

(b) findm lists Ly;ge (ki, kiv1 — 1, H;) and list Ly gpr0w (S);

(c) runthe KR-algorithm and keep the solution (if it's hetighat most
(14 16¢)b).
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4 Select a packing whose weight is maximum;
5 Apply the shifting technique.
We conclude with the following final result.

THEOREM 10 The RP-algorithm outputs a rectangle packing of a sublist
L' C Linthe areal0,a] x [0, b] of the dedicated rectanglB. The weight of
the packingueight(L') > (1—¢)OPT, whereOPT is the optimal weight. The
running time of th& P-algorithm is bounded b§) (n!/¢* (1/£6) /<"1 [K S (n, ¢)-
KR(n,e)]), where K. S(n,¢) is the running time of a FPTAS for solving the
knapsack problem, an R(n, ) is the running time of the KR-algorithm.

5. Packing into k rectangular bins

Here we consider the problem of packing weighted rectargtes: bins.
Given k identical bins of size(a,b) and a listLL of n rectanglesR; (i =
1,...,n) with widths a; € (0,a], heightsb; € (0,b], and positive integral
weightsw;. The goal is to find a sublist’ C L of rectangles and its packing
into £ bins such that the total weight of packed rectangles is miaeidn We
present the following algorithm:

Algorithm £-Bins:
Input: List L, accuracy > 0, k bins of size(a, b).

Case 1.k < O(1/e*). Use a(2 + ¢)-approximation algorithm, that gener-
alizes an approximation algorithm for one bin [Jansen anahgh2004] to a
constant number of bins (for the details we refer to a fulkiar of this paper).

Case 2.k > O(1/&%).
1 Take allk bins together to get the rectandle &b).

2 Apply our algorithm with the PTAS to pack a subset of rectasignto
a larger rectangléa, kb), that gives us a packing with the total profit
> (1 —¢)OPT.

3 Take the current rectangle packing. Dréiw— 1) vertical lines which
divide the packing intd bins.

4 Split this packing into 2 solutions:

(a) solution, which contains all rectangles which lie imsaf each bin.

(b) solution, which contains all rectangles which intetsety dividing
line between two bins.

5 Take the solution which has the highest profit.
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We can conclude with the following result.

THEOREM 11 The algorithmk-Bins is a(2+¢)-approximation algorithm. Its
running time is polynomial in the number of rectangtefor any fixeds > 0.
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