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Abstract A new adaptive sorting algorithm is introduced. The new implemen-
tation relies on using the traditional AVL trees, and has the same per-
formance limitations. More precisely, the number of comparisons per-
formed by our algorithm, on an input sequence of length n that has I
inversions, is at most 1.44n lg I

n
+ O(n) 1. Our algorithm runs in time

O(n log I
n
) and is practically efficient and easy to implement.

1. Introduction
An adaptive sorting algorithm is a sorting algorithm that benefits

from the presortedness in the input sequence. In the literature there
are plenty of adaptive sorting algorithms. One of the commonly recog-
nized measures of presortedness is the number of inversions in the input
sequence [12]. The number of inversions is the number of pairs of in-
put items in the wrong order. For an input sequence X, the number of
inversions of X, Inv(X), is defined

Inv(X) = |{(i, j) | 1 ≤ i < j ≤ n and xi > xj}|.
An adaptive sorting algorithm is optimal with respect to the number

of inversions when it runs in O(n log Inv(X)
n ) [9]. Unfortunately, most

of the known theoretically optimal adaptive sorting algorithms are not
practical and not easy to implement [9, 18, 3, 17, 15].

The number of comparisons is considered one of the main analyti-
cal measures to compare different sorting algorithms. The number of
comparisons performed by an Inv-optimal sorting algorithm is at most
cn lg Inv(X)

n + O(n) comparisons, for some constant c ≥ 1. Among the
adaptive sorting algorithms, Splitsort [13] and Adaptive Heapsort [14]
guarantee c = 2.5. Finger trees [9, 17], though not practical, guarantee
c = 2. Trinomialsort [6] guarantees c = 1.89. Recently, Elmasry and
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Fredman [7] introduced an adaptive sorting algorithm with c = 1, and
hence achieving the information theoretic lower bound for the number
of comparisons.

The task of achieving the optimal number of comparisons is therefore
accomplished, still with the practicality issue being open. The algorithm
in [7] uses near optimal trees [1], which is a practically complicated struc-
ture that involves a large maintenance overhead. The other operations
performed by the algorithm in [7] (splits, combines, coalescing and re-
duction operations) contribute with another overhead factor, making
the algorithm not fully practical. Namely, the time bound for the oper-
ations, other than the comparisons, performed by the algorithm in [7] is
Θ(n log Inv(X)

n ). Among the adaptive sorting algorithms Splitsort [13],
Adaptive Heapsort [14] and Trinomialsort [6] are the most promising
from the practical point of view. As a consequence of the dynamic fin-
ger theorem for splay trees (see Cole [5]), the splay trees of Sleator and
Tarjan [21] provide a simplified substitute for finger trees that achieves
the same asymptotic run-time. Moffat et al. [19] performed experiments
showing that Splaysort is efficient in practice.

We introduce a new adaptive sorting algorithm that uses AVL trees
[2]. Our new algorithm guarantees c = 1.44 in the worst case, while it
achieves a value of c very close to 1 (optimal) from the practical point
of view [10, 11]. This result is a direct consequence of the nature of the
well-known search trees known as AVL trees. The worst-case behavior of
the AVL trees is achieved when the tree is a Fibonacci tree, a case that
rarely pops-up in practice. The contribution of this paper is to introduce
a practically efficient adaptive sorting algorithm, and to show that apart
from the comparisons, the other operations performed by this algorithm
take linear time; a fact that does not hold for other efficient adaptive
sorting algorithms. For example: Trinomialsort, Adaptive Heapsort and
Splitsort would perform a non-linear number of moves. We expect our
new algorithm to be efficient, fast in practice, and easy to implement.
The space utilized by our algorithm is O(n).

Other methods that use AVL trees to implement adaptive sorting al-
gorithms include the algorithm of Mehlhorn [18], and the finger trees of
Tsakalidis [23]. These two algorithms require augmenting the AVL trees
with extra information that make the implementation non-practical,
with a larger constant for the number of comparisons.

Several authors have proposed other measures of presortedness and
proposed optimal algorithms with respect to these measures [8, 4, 14,
15]. Mannila [16] formalized the concept of presortedness. He studied
several measures of presortedness and introduced the concept of optimal-
ity with respect to these measures. Petersson and Moffat [20] related all
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of the various known measures in a partial order and established new
definitions with respect to the optimality of adaptive sorting algorithms.

2. The algorithm
Consider the following method for inserting y into a sorted sequence,

x1 < x2 < · · · < xn−1. For a specified value r, we first perform a lin-
ear search among the items xr, x2r, · · · xrbn/rc to determine the interval
of length r among x1 < x2 < · · · < xn−1 into which y falls. Next,
we perform a binary search within the resulting interval of length r to
determine the precise location for y. If y ends up in position i, then
i
r + lg r + O(1) comparisons suffice for this insertion. Using the strat-
egy of successively inserting the items x1, · · · , xn in reverse order (into
an initially empty list), let ij be the final position of element j after the
jth insertion. The total number of comparisons required to sort would
be bounded by

∑
1≤j≤n

ij
r + lg r + O(1)) = Inv(X)

r + n lg r + O(n). If

we use r = Inv(X)
n , the required bound on the number of comparisons

follows. Unfortunately, we cannot use this value of r, since the number
of inversions is not known beforehand. Instead, we choose r to be a dy-
namic quantity that is maintained as insertions take place; r is initially
chosen to be r1 = 1, and during the kth insertion, k > 1, r is given by
rk = 1

k−1

∑
1≤j<k ij . The quantity rk is at least 1. For completeness,

we give the proof of the following lemma, which is in [7].

Lemma 1 Our insertion sort algorithm performs at most n lg Inv(X)
n +

O(n) comparisons to sort an input X of length n.

Proof. Define E(k), the excess number of comparisons performed dur-
ing the first k insertions, to be the actual number performed minus
k lg( 1

k

∑
1≤j≤k ij ). We demonstrate that E(k) = O(n) when k = n. We

proceed to estimate E(k + 1)−E(k).
Let r′ denote the average, 1

k+1

∑
1≤j≤k+1 ij , and let r denote the

corresponding quantity, 1
k

∑
1≤j≤k ij . Then

E(k + 1)− E(k) = lg r +
ik+1

r
− (k + 1) lg r′ + k lg r + O(1),

=
ik+1

r
+ (k + 1)(lg r − lg r′) + O(1). (1)

Now write r′ = (k · r + ik+1)/(k + 1) = (k/(k + 1)) · r · g , where g =
1 + ik+1/(k · r) . Substituting into (1) this expression for r′, we obtain

E(k + 1)−E(k) =
ik+1

r
+ (k + 1) lg

k + 1
k

− (k + 1) lg g + O(1) .
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The term (k+1) lg k+1
k is O(1), leaving us to estimate ik+1/r−(k+1) lg g.

We have two cases: (i) ik+1 ≤ k · r and (ii) ik+1 > k · r
For case (i), using the fact that lg(1 + x) ≥ x for 0 ≤ x ≤ 1, we find

that ik+1/r− (k + 1) lg g ≤ 0 (since lg g ≥ ik+1/(k · r) for this case). For
case (ii), we bound ik+1/r − (k + 1) lg g from above using ik+1. But the
condition for case (ii), namely ik+1 > k ·r =

∑
1≤j≤k ij , implies that the

sum of these ik+1 estimates (over those k for which case (ii) applies) is at
most twice the last such term, which is bounded by n. Since E(1) = 0,
we conclude that E(n) = O(n) . ¤

To convert the above construction to an implementable algorithm with
total running time O(n log Inv(X)

n ), we utilize the considerable freedom
available in the choice of the rk values in the above construction, while
preserving the result of the preceding Lemma. Let α ≥ 1 be an arbitrary
constant. If we replace our choice for rk in the above algorithm by any
quantity sk satisfying rk ≤ sk ≤ α · rk, then the above lemma still holds;
the cost ik/sk + lg sk + O(1) of a single insertion cannot grow by more
than O(1) as sk deviates from its initial value rk while remaining in the
indicated range.

Efficient Implementation
At each insertion point, the previously inserted items are organized

into a list of consecutive bands from left to right. Every band has
1, 2, or 3 AVL trees. Each of our AVL trees is organized as a search
tree with the data items stored only in the leaves of the tree while the
internal nodes contain indexing information. A rank value is assigned to
every band. The trees of a band with rank h will have heights equal to h,
except for at most one tree that may have height equal to h−1. We call
a tree whose height is one less than the rank of its band a short tree. We
call a band that has a short tree an s-band. These conditions are referred
to as the rank conditions. At any stage of the algorithm, the ranks of
the bands form an increasing consecutive sequence m,m + 1,m + 2, . . .
from left to right, with the value of m changing through the algorithm.
This is referred to as the monotonicity condition.

With every insertion, the relevant tree is first identified by employing
a linear search through the list of trees from left to right. After each
insertion, the band list may require reorganization, though on a rela-
tively infrequent basis. The details of this implementation is facilitated
by defining the following operations:
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1. Split: An AVL tree of height h can be split in constant time into
two trees, one of height h−1 and the other of height h−1 or h−2,
by removing the root node of the given tree.

2. Combine: Two AVL trees, one of height h − 1 and the other of
height h−1 or h−2, can be combined in constant time to form an
AVL tree of height h by adding a new root node. The data values
of the left tree are not larger than those of the right tree.

3. Find largest: The value of the largest member of a given tree can
be accessed in constant time. A pointer to the largest value is
maintained in constant time after each of the other operations.

4. Tree-insertion: An insertion of a new value into an AVL tree of
height h can be performed with at most h comparisons, and in
time O(h) [2].

Consider the cost of the single operation: inserting y into a sorted
sequence S = x1 < x2 < · · · < xn−1. If S is organized, as mentioned
above, in a list of trees, and y belongs to the ith tree, which is of height
h, then the insertion requires no more than i + h comparisons.

As a result of an insertion, the height of the trees may increase and
the rank conditions are to be maintained. Such a case arises when the
height of a tree, in a band of rank h, becomes h + 1. This tree is
split into two trees. If, as a result of this split, we now have two short
trees in this band, these two trees are combined. (If these two trees are
not adjacent, the heights of the trees in this band must have either the
pattern h−1, h, h−1 or h−1, h, h, h−1. In either case, we split the middle
trees, whose heights are h, then combine every adjacent pair of the trees.
This accounts for at most 3 splits and 3 combines.) Otherwise, if the
number of trees of this band becomes 4, the two right trees are combined
and the combined tree is moved to become the left tree of the next
higher band. This operation is referred to as a promote operation. This
combine/promote may be repeated several times through consecutive
bands. We call such a process a propagating promotion.

Besides enforcing the rank conditions, we maintain the additional con-
dition that just prior to the kth insertion the rank m of the leftmost band
satisfies

m = dlogθ rke+ 1, (2)

where θ is a parameter of the algorithm whose value will be analyzed
and determined later. The value of θ should satisfy 1 < θ ≤ 2.

If, as a result of an insertion, rk grows such that the current value
of m is now equal to dlogθ rke (note that rk may grow by at most 1),
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then a coalescing operation is performed. The purpose of the coalescing
operation is to make the rank of the leftmost band equal to m + 1. The
trees of the leftmost interval are combined to form 1 or 2 trees that
are promoted to the next band whose rank is m + 1 (if there were 3
trees in the leftmost band, 2 of them are combined including the short
tree if it exists). If there was only one short tree of rank m − 1 that
is promoted, the leftmost two trees of the band whose rank is m + 1
will have heights m− 1,m or m− 1,m + 1. In the first case, these two
trees are combined. In the second case, the tree with height m + 1 is
first split producing a pattern of heights that is either m − 1,m,m or
m−1,m−1,m or m−1,m,m−1. For the first two patterns, the leftmost
two trees are combined. For the second pattern, the combined tree is
further combined with the tree to its right. For the third pattern, the
tree, whose rank is m, is split and each of the two resulting adjacent
pairs is combined (for a total of at most 2 splits and 2 combines). If, as
a result of the promotion, two short trees of rank m exist in the band
whose rank is m + 1, these two trees are combined (as above). If the
number of trees of this band becomes 4 or 5, a propagating promotion
is performed and repeated as necessary through consecutive bands. As
a special case, that does not affect the bounds on the operations of the
algorithm, the coalescing operation is skipped when there is only one
band and the number of nodes is not enough to perform the coalescing
operation while maintaining the rank conditions.

If, as a result of an insertion, rk drops such that the current value of
m is now equal to dlogθ rke + 2 (note that rk may drop by at most 1),
then a reduction operation is performed. The purpose of the reduction
operation is to make the rank of the leftmost band equal to m − 1. A
new leftmost band with rank m− 1 is created. The leftmost tree of the
old leftmost band (the band with rank m) is moved to the new band.
We call this operation a demote operation. If this tree has height m,
then it is split. If, as a result of the demotion, the band whose rank is
m now has no trees, the leftmost tree of the band whose rank is m + 1
is demoted and split if necessary. This demote/split may be repeated
for several times through consecutive bands. We call such a process a
propagating demotion.

Note that the reduction and the coalescing operations serve to pre-
serve the rank and monotonicity conditions as well as (2).
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Analysis

Lemma 2 Our algorithm performs at most n logφ
Inv(X)

n + O(n) com-

parisons to sort an input X of length n (φ is the golden ratio = 1+
√

5
2 ).

Proof. In view of Lemma 1, it suffices to show that a given insertion,
arriving in position L, requires at most

L/sk + logφ sk + O(1) (3)

comparisons, where rk ≤ sk ≤ α · rk and α ≥ 1 is an arbitrary constant.
Let m be the rank of the leftmost band, and m′ be the rank of the

band that has the tree into which the newly inserted item falls, and let i
be the position of this tree (number of the tree counting the trees from
the left), so that the total insertion cost is at most i + m′. As a result
of the rank and monotonicity conditions, we have i ≥ m′−m+1. Next,
we bound L from below as follows. Contributing to L, there is at least 1
tree in each of the bands with ranks from m to m′− 1. There is another
i−d−1 (where d = m′−m ≥ 0) trees of heights at least m−1. For any
AVL tree, the size of a tree of height h is at least φh. It follows that:

L > (i− d− 1)φm−1 +
m′−2∑

i=m−1

φi,

> (i− d− 2)φm−1 + φm′−1.

Choosing our parameter to be θ = φ, it follows from (2) that φm−1 = sk.
Hence

L

sk
> (i− d− 2) + φd.

This results in the following relation, which implies (3).

i + m′ < L/sk + m + 2d− φd + 2,

< L/sk + logφ sk + O(1).

¤

Lemma 3 The time spent by our algorithm, in performing operations
other than comparisons, is O(n).

Proof. The primitive operations, which the algorithm performs other
than comparisons, are the spit and combine operations. Each of these
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operations requires constant time. Excluding the propagating promotion
and demotion, the number of splits and combines per insertion, coalesc-
ing or reduction is constant. Hence, the only operations that need to be
investigated are the propagating promotions and demotions.

We use a potential function [22] to derive the linear bounds on these
operations. Let Ns be the number of s-bands and let Nodd be the number
of bands that have 1 or 3 trees. Let Φi be the potential function after
the ith insertion, such that Φi = c1Nodd + c2Ns, where c1 and c2 are
constants to be determined and c1 > c2. The value of Φ0 is 0, and
the value of Φn = O(n). What we need to show is that the difference
in potential when added to the actual amount of work during the ith
insertion is bounded by a constant.

Consider the case where during the i + 1 insertion a propagating pro-
motion that involves t bands takes place. Assume first that the initiative
of this propagating promotion is an insertion that causes a height of a
tree to become h + 1 in a band of rank h. As a result of a promotion
in a band, the number of trees in this band should have been 3, and
becomes 2 after the promotion. This should be the case for the t − 1
bands that propagate the promotion, accounting for a decrease of t− 1
in the value of Nodd. In the last band, the opposite may take place and
Nodd may increase by 1 as a result. Except for the first band, into which
the newly inserted item falls, the number of s-bands may only decrease
as a result of any of these promotions. Hence, the amortized cost of the
propagating promotion in this case is bounded by O(t)− c1(t− 2) + c2.
By selecting c1 greater than the constant involved in the O() notation
in this bound, the amortized cost of this operation is a constant. The
analysis is similar if the initiative for the propagating promotion is a
coalescing operation. The only difference is the first band that gets pro-
moted trees, where the number of trees in this band may remain the
same (either 2 or 3). This band may also be converted to an s-band as a
result of this promotion. This leads to a bound of O(t)− c1(t− 3) + c2,
which is a constant as well.

Consider the case that during the i+1 insertion a reduction operation
is performed. Assume that this reduction initiates a propagating demo-
tion that involves t bands. A new band is created that may get 1 tree
(increasing Nodd by 1), or 2 trees one of them may be short (increasing
Ns by 1). For each of the next t − 2 bands that involves a demotion,
the number of trees in each of these bands should have been 1 before
this propagating demotion. If a demoted tree was not short, it is split
resulting in 2 trees. This causes Nodd to decrease by 1, while Ns may in-
crease by 1. On the other hand, if a demoted tree was short, the number
of trees in the corresponding band remains 1 after the demotion, while
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the number of s-bands decreases by 1 causing Ns to decrease by 1. In
the last band, the opposite may take place, and Nodd may increase by
1 as a result. Hence, the amortized cost of the propagating demotion is
bounded by O(t)− (c1 − c2)(t− k − 2)− c2k + 2c1, for some k ≤ t− 2.
By selecting c2 and c1−c2 greater than the constant in the O() notation
in this bound, the amortized cost of this operation is a constant. ¤

We have thus established the following theorem.

Theorem 4 The preceding insertion sort algorithm sorts an input X of
length n in time O(n log Inv(X)

n ) , and performs at most n logφ
Inv(X)

n +
O(n) comparisons. The space requirement for the algorithm is O(n).

Tuning the parameter
In the above analysis, to prove the bound for the number of compar-

isons, we have chosen the parameter θ = φ. In practice, this value is
a too conservative value to insure the worst-case behavior. For random
sequences the performance of AVL trees is very efficient, and empirical
data shows that the average height of an AVL tree of n nodes is about
1.02 log n [10, 11]. This motivates using a larger value of θ. Knowing
that the constant factor in the height of an average AVL tree is close to
1, the parameter θ can be chosen to be closer to 2.

Notes
1. lg x is the maximum of log2 x and 1.
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