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Abstract We introduce an extension of the Parikh mapping called the Parikh g-matrix
mapping, which takes its values in matrices with polynomial entries. The mor-
phism constructed represents a word w over a k-letter alphabet as a k-dimensional
upper-triangular matrix with entries that are nonnegative integral polynomials in
variable g. We show that by appropriately embedding the k-letter alphabet into
the (k + 1)-letter alphabet and putting ¢ = 1, we obtain the extension of the
Parikh mapping to (k + 1)-dimensional (numerical) matrices introduced by Ma-
teescu, Salomaa, Salomaa, and Yu. The Parikh g-matrix mapping however, pro-
duces matrices that carry more information about w than the numerical Parikh
matrix. The entries of the g-matrix image of w under this morphism is con-
structed by g-counting the number of occurrences of certain words as scattered
subwords of w.

Keywords:  Parikh mapping, Parikh matrix mapping, scattered subword, injectivity, mor-
phism, g-analogue.

1. Introduction

Parikh’s theorem [7] says that every context-free language is “letter-equivalent
to a regular language. More precisely, the commutative image of any context-
free language is always a semilinear set, and is therefore also the commutative
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image of some regular set. Consider the alphabet X = {a; < az < --- < a;}
and for w € £*, define by |w|,, the number of occurrences of a; in w. The
Parikh mapping is a morphism

U ¥ 5 INF

where IN denotes nonnegative integers and ¥ (w) = (|w|ay, |w]ay, -, [Wlay)-

The Parikh mapping is a very important concept in the theory of formal lan-
guages. Various languages accepted (generated) by automata (grammars) more
powerful than pushdown automata (context-free grammars) have been shown
to have effectively computable semilinear sets. For example, it is known that
every language accepted by a pushdown automaton augmented with reversal-
bounded counters (i.e., each counter can be incremented/decremented by one
and tested for zero, but the number of alternations between nondecreasing and
nonincreasing modes is bounded by a fixed constant) has a semilinear Parikh
map [4]. The fact that the emptiness problem for semilinear sets is decidable
implies that the emptiness problem for these automata (grammars) is decid-
able. This decidability of emptiness has been used to show the decidability of
many decision questions in formal languages (e.g., [3]) and formal verification
(e.g., [5)).

The Parikh matrix mapping introduced in [6] is a morphism
\Ika 1 X — M/H-l

where M1 is a collection of (k + 1)-dimensional upper-triangular matrices
with nonnegative integral entries and unit diagonal. The classical Parikh vector
U (w) appears in the image matrix as the second diagonal.

The Parikh g-matrix mapping introduced in this paper is a morphism

\Ix'; 2 B = Mi(q)

where My (q) is a collection of k-dimensional upper-triangular matrices with
nonnegative integral polynomials in g as entries. The diagonal entries of \If’; (w)
are

(q‘w|01 . q|w‘0‘2, “ae ,q|w‘ak)

which readily encodes the Parikh vector. Moreover if we embed %, into X4
in the obvious way, and put ¢ = 1, then we obtain the matrices of the Parikh
matrix map of [6]. Thus, viewingw € X} asaword in Xz 1 with |w|e,,, =0,
the Parikh g-matrix U5*!(w) evaluated at ¢ = 1 is precisely the (k + 1)-
dimensional numerical Parikh matrix ¥ o4, (w).

It is a basic property of the Parikh matrix mapping that two words with
the same Parikh matrix have the same Parikh vector, but two words with the
same Parikh vector in many cases have different Parikh matrices [1]. Thus,
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the Parikh matrix gives more information about a word than the Parikh vector.
The injectivity of the Parikh matrix mapping is investigated in [1]. From our
construction it is easy to see that two words with the same Parikh g-matrix
have the same Parikh matrix (and therefore the same Parikh vector), but there
are cases in which two words with the same Parikh matrix have different g-
matrices. Thus the Parikh g-matrix gives more information about a word than
the Parikh matrix.

The basic idea in the construction of the entries of the Parikh g-matrix image
of w is g-counting the number of occurrences of certain words as scattered
subwords of w.

The paper has five sections in addition to this section. Section 2 gives some
basic notation and definitions. Section 3 recalls the notion of a Parikh ma-
trix mapping introduced in [6] and the fundamental theorem concerning these
mappings. Section 4 presents our new Parikh mapping, called ¢g-matrix map-
ping, that generalizes the Parikh matrix mapping: whereas the latter produces
matrices with nonnegative integer entries, the former produces matrices with
nonnegative integral polynomials (in variable ¢) entries. This extended map-
ping produces matrices that carry more information about the mapped words
than the numerical matrices produced by the Parikh matrix mapping. Section
5 presents the main results, including Theorem 8, which gives the main prop-
erties of a g-matrix mapping. Section 6 looks at some matrix operations such
as injectivity and inverse concerning g-matrix mapping.

2. Definitions

We start with some basic notation and definitions. Most of these are as they
appear in references [6] and [1]. The set of all nonnegative integers is denoted
by IN. We denote by IN[¢] the collection of polynomials in the variable ¢
with coefficients from IN. Z denotes integers, and Z[g] denotes the ring of
polynomials in the variable ¢ with integral coefficients. For an alphabet ¥, we
denote the set of all words over X by 3* and the empty word by A. We use
“ordered” alphabets. An ordered alphabet is an alphabet ¥ = {a;, a9,...,ax}
with a relation of order (“<™) on it. If for instance a1 < as < --- < ag, then
we use the notation

E:{a1<a2<---<ak}.

If w € ¥* then |w| denotes the length of w. For a; € ¥ and w € X* the
number of occurrences of the letter a; in w is denoted by |w|,,. Accordingly

w| = |wlay + [w]ay + -+ + |wlay-

Let X = {a; < ag < --- < a,} be an ordered alphabet. The Parikh vector
of w € ¥* is the vector of occurrences (|w|q,, |W|ay, "+, |wla, ). The Parikh
mapping

T ¥* — INF
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is defined by setting
(w) = (Jwlay, [wlay, -+ - s [wlay,)-

Let v, w be words over 3. As defined in [6], the word v is called a scattered
subword of w if there exists a word « such that w € w LLIv, where LLI de-
notes the shuffle operation. If v,w € ¥*, then the number of occurrences of
v in w as a scattered subword is denoted by |w|scqtt—y. Partially overlapping
occurrences of a word as a scattered subword of a word are counted as distinct
occurrences. For example, |acbb|scatt—ap = 2, |achalscatt—ap = 1.

Notation: We shall also find it useful to denote |w|scatt—v DY Sw,p. Using this
notation, we Write Sgcpp,ap = 2, Sacba,ab = 1, aNd Sy, o, = |wlq; TOr any letter
a; € 2.

Notation: Consider the ordered alphabet {a1 < as < --- < ax} where k > 1.
As in [6], we denote by a; ; the word a;a;11 -+ a; where 1 <7 < j <k.

For motivation and further issues about the Parikh mapping as well as language-
theoretic notions not considered here, we refer the reader to [8].

3. Parikh matrix mapping

We first describe the extension of the Parikh mapping to matrices as origi-
nally defined in [6]. The extension involves special types of triangular matri-
ces. These are square matrices m = (m; j)1<i j<k Such that m; ; € IN, for all
1<4,75<kmy;=0forall<j <3<k, and moreover, m;; = 1, for
all 1 <4 < k. The set of all these matrices of dimension & is denoted by M.
Thus My, is the collection k& x k upper-triangular matrices with entries from
IN and unit diagonal. The set M is a monoid with respect to multiplication
of matrices and has a unit which is the matrix 1.

The main notion introduced in [6] is as follows:

DEFINITION 1 Let ¥ = {a; < ag < --- < ai} be an ordered alphabet,
where & > 1. The Parikh matrix mapping, denoted by ¥ A4, , is the morphism:

\I/Mk DI Mk+1,
defined as follows:
If War(ar) = (mij)i<ij<r+1) thenforeach 1 <i <k +1,m;; = 1,

my+1 = 1 and all other elements of the matrix ¥, (a;) are zero.

ExXAMPLE 2 Let ¥ be the ordered alphabet {a < b < c}. Then the Parikh
matrix mapping ¥ 5z, represents each word over £* as a 4 x 4 upper triangular
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matrix with unit diagonal with nonnegative integral entries. We compute some
special cases.

Ty (ab?) = Upg,(a)T g, (D) T, (b)  and

‘IJMs (abca) = \IJM:s (a’) LIj./\/ia (b)‘IJMs (C) \IJM:«; (a’) .
Thus
r1 1 0 071 0 0 0 100 0
> o100 01 1 0 01 1 0
Yts(ab”) = 00 1 0 00 1 0 00 1 0
oo o 1|00 01 00 0 1
r1 1 2 07
B 01 2 0
= 00 1 0
L0 0 0 1
and
r1 10 071 00 0 100 0 110
Ur, (abea) = 01 0 0 011 0 010 0 010
Msla0CA) =19 0 1 0 00 1 0 00 1 1 0 0 1
Lo 0o o0 1][0 o001 00 0 1 0 0 0
r1 02 1 17
B 01 1 1
N 0 0 1 1
L0 0 0 1|
and consequently
11 2 0 1 2 1 1 1 3 4 4
. 012 0 01 1 1 01 3 3
Wy (ababea) = 00 1 0 001 1|=]0oo0 11
00 0 1 00 0 1 00 0 1

Remark: The Parikh matrix mapping is not an injective mapping. For instance
over the ordered alphabet {a < b < c} one has

W g, (ach) = W g, (cab) =

OO O =
OO =
O =
—_-o o

Conditions for two words « and 3 to possess the same Parikh matrix was
studied for the binary alphabet in [1]. We will discuss some of these conditions
later in the paper.

The main property of the Parikh matrix mapping proved in [6] is the follow-
ing theorem:

(c) 2004 IFIP

= o oo



130

THEOREM 3 ([6], Theorem 3.1) Let ¥ = {a; < ay < --- < aj} be
an ordered alphabet, where k£ > 1 and assume that w € ¥*. The matrix
Uar, (w) = (mi5)1<ij<k+1), Nas the following properties

1. m;=0foralll <j<i<(k+1),

2. mi;=1,forall1 <i< (k+1),

3. Mij+1 = Swia,,, foralll < <5 <k
As a corollary

COROLLARY 4 ([6], Corollary 3.1) Let ¥ = {a; < ag < --- < a;} The ma-
trix Wz, (w) has the second diagonal (i.e., the vector (m1,2, ma3, - .., Mk k+1))
the Parikh vector of w, i.e.,

(m12,m23,---, M kt1) = Y(w) = (|wlay, [Way, | Wlay,)-

4. g-counting scattered subwords

Next we introduce a collection of polynomials Sy, 4, ;(¢) indexed by pairs
of words a; ;,w € £*, with 5 < k — 1. These polynomials will “g-count”
the quantities S, 4, ; defined above for general v and w as will be explained
shortly in the case a; ; is a scattered subword of w. To construct S, 4, ;(q), we
consider each factorization

W = UQiUj+180541 "~ - UjQ5 U541 (1)
with ug € ¥* fori < s < j + 1, and construct the corresponding monomial

q|ui|a¢+‘ui+1 a1 Fotluslag Fluiralag g )

in IN[g], and add up these monomials. Note that a;,; € 3 since j < k, so that
the last term in the exponent in (2) is defined. Thus

Sw,az-,j (q) = z q\ui|ai+\ui+1\ai+1 ot luglaj+ujsila; gy @A)
w:u¢a¢"'UjajUj+1

EXAMPLE 5 Suppose ¥ = {a < b < c < d}andi = 2,5 = 2. Then
a;.j = b and for w € ¥,

Swola) = 3 gl

w=zby
For example for w = baccbcdab, the relevant factorizations of w are

(A)b(accbedabd), (bace)b(cdab), (baccbeda)b(N),
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and therefore
Swp(@) =" + ¢+ ¥ =2¢* + ¢

EXAMPLE 6 Suppose ¥ = {a < b < c < d}andi = 2,5 = 3. Then
a; ; = bc and for w € ¥,

S pelq) = Z gl =vtlyletlzla

w=abycz
For example for w = baccbedab, the relevant factorizations of w are
(N)b(a)c(cbedab), (A)b(ac)c(bedadb), (A)b(aceb)c(dab), (bacc)b(A)c(dab),
and therefore

Suwbe(q) = qOTO! 4 gOFIHL  g0+2H1 4 gLH0+1 — g | 902 4 g3,

ExAMPLE 7 Suppose £ = {a < b < ¢ < d}andi = 1,5 = 3. Then
a;; = abc and for w € ¥*,

S abe(q) = Z gltletlalstlyletlzla

w=tazrbycz
For example for w = baccbedab, the only relevant factorization of w is
(b)a(ce)b(N)c(dab),

and therefore

Sw,abc(Q) = q0+0+1 =4q.

Since the summation in the definition (3) is over all occurrences of a; ; in w
as a scattered subword, the following proposition is immediate:

PROPOSITION 1 Let¥ = {a; <ag <---<agfand1 <i < j <k. Then
Sw:ai,j(]') = Sw:ai,j (= |w‘scatt—ai,j)-

This is the sense in which the polynomials Sy, 4, ; (¢) “g-count” the number of
occurrences of a;a; 1 - - - a; as a scattered subword of w. These polynomials
are the “g-analogues” of the numbers Sy, 4, ;-

5. Parikh g-matrix mapping

We denote by M (q) the collection of k-dimensional upper-triangular ma-
trices with entries in IN[g]. Let I, denote the identity matrix of dimension k.
The matrix ¥, (a;) corresponding to a a; € X is defined as the matrix obtained
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from I, first by changing the [-th diagonal element from 1 to ¢. Then if I < &,
we also change the entry immediately to the right of the ¢ from 0 to a 1. Thus
if Uy (ar) = (mij)i<ij<t then

my =4,

miﬂ-zlforlgigk,i#l,

w e

myi+1 = 1ifl < k,
4. all other entries of the matrix ¥, (qa;) are zero.
When the alphabet is ¥ = {a < b < c}, then

g 1 0 1 00 1 00
Uya)=1]0 1 0|, Tub)=|0 q 1 |,Te(c)=]|0 1 0
0 01 0 01 0 0 ¢q
We extend the mapping from X to ¥* by setting
1 U, () = I,

2. Uy(wiwy - wp) = Yg(w)Vg(ws) -+ Vy(wy), w; € £,1 <i<n
We will refer to ¥, = \I/’g as the Parikh g-matrix mapping. Note that the pa-
rameter k, which is || is implicit in our notation.

Remark: Just as the Parikh mapping is a morphism from the monoid (3*, -, A)
to the monoid (IN*, +, (0,0, ...,0)), the set of matrices My (g) is a monoid
with respect to matrix multiplication and Iy, as its unit.

Thus the Parikh g-matrix mapping is a morphism

U, @ 5% = Mg(g).

As examples, we have

T, (ab?) = U, (a) T, (b)T,(b) and ¥, (abca) = W, (a) ¥, (b) T, (c) T, (a).
Thus

¢ 1 0771 0 071 0 0] g ¢ 1+¢q
T,ab?) = [0 1 0|0 g 1 0 g 1|=]0¢ 1+g

(00 1][0O01][0O0 1] 00 1

¢ 1 0771 0 0710 O07[qg 10
Uo(abca) = [0 1 0 0 g 1 010 010

00 1]J[0O01]J[0O0¢]L[OO1

[ ¢° 29 q]

= 0 g ¢
[ 0 0 ¢
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Consequently, for w = ab®abca, we compute that

(g ¢¢ l+¢q @ 2q g
Tyw) = |0 ¢ 1+g 0 q ¢
0 0 1 0 0 ¢
[ ¢ 2¢° + ¢ q+2¢*+¢
= |0 ¢ q+q2+q3]
L 0 0 q

Remark: For the Parikh g-matrix mapping it is not true that if £ is a context-
free language, then its image is some suitable extension of the notion of semi-
linearity to matrices over IN[g]. This is a direct consequence of Theorem 9 and
the negative result concerning the Parikh matrix mapping ([6], Remark 3.2).

PROPOSITION 2 Let ¥ = {a; < ag < -+ < ax} and w € £*. Then the
vector of diagonal entries of the matrix ¥ ,(w) is

(q|w‘a1 ) q|w‘a2a e 7q|w‘ak) € IN[q]k

Proof The matrices W,(q;) are all upper-triangular. It is easy to see that
the diagonal entries of a product of two upper-triangular matrices depend only
on the diagonal elements of each of the matrices. Since diagonal matrices
commute, and each occurrence of the letter a; in w has the effect of multiplying
the [-th diagonal entry of the k-dimensional identity matrix I, by g, the result
follows immediately. .

Remark: We note that the Parikh vector of w is given by the formal derivative
of
(q|w‘a1 ) q|1U|a25 e aq|w‘ak) € ]N[q]k

with respectto g at ¢ = 1.

THEOREM 8 Let¥ = {a; < ag < --- < ax} be an ordered alphabet, where
k > 1 and assume that w € X*. The matrix ¥ (w) = (m;;(q))1<i j<k, has
the following properties

1. m;;=0foralll <j<i<k,
2. m;; = q"lai forall 1 <i <k,
3. mi,j4+1 = S’w,ai,j (q), forall1 <i<j<k.

Proof The proof of the parts 1. and 2. are immediate. \We now prove property
3. Assume that |w| = n. The proof is by induction on n. If n < 1, the assertion
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holds. Assume now that part 3. holds for all words of length » and let w be of
length » + 1. Write w = w'a; where [w'| = nand a; € X. Then

Vy(w) = \I’q(wl)‘l’q (aj)

Assume that

[ glw'ler m'1,2 mll,k
0 gl'las .. L. ml
T (w') = : : : : : =M
: : : : m;cq,k
L 0 0 cee e glvle

By the inductive hypothesis the matrix ¥,(w’) has property 3. The proof has
two cases depending on whether j = k, or j < k. For 5 < k, we have

1 0 0
\Ifq(aj): 0 ... q 1 ... 0
_() 0 1_

where the matrix differs from I, only in two entries: The entry in position
(4,7) is g, and the entry in position (7, j + 1) is 1. Let M = ¥ (w). Then

- q|w'\a1 m'},z m'lJC 171 o 0
0 q‘w ‘aQ ml?,k:

M = 0 g 1 0

: : : : m;c_lyk Do : : P

0 0 oo e gl ][00 1

If M = (myp,q)1<p,q<k, then

mi; = qm;forl<i<j,

I I . .
Mij+1 = My ;+my i for1<i<j

and for all other indices, m,, = my, . But these are immediate from the
definition of the polynomials S, 4, ; (¢) which satisfy

Swlajaai,j—l(q) = qu,ai,j—l(Q) for1<i<y,
Sw’aj,ai,j (q) = Sw’,ai,jfl(q) + Sw’,ai,j (q) fOT 1< <j
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and are unchanged otherwise. In the case j = k the only change that appears
in going from M’ to M is that the last column M is obtained from M’ by
multiplying the elements of the last column of M’ by ¢. This corresponds to
the fact that the number of occurrences of ay Iin ug4q In any factorization of
the form (1) is increased by 1: i.e.,

Sw'ak,a1,k—1 (q) = qu’,a1,k—1 (9)

and the proof follows by induction. °

Remark: The structure of how the polynomials in the matrix are indexed
can be mnemonically recorded as shown below in the case of the four-letter
alphabet Y= {8.1 <ap <az < a4}:

al q|w‘“1 ay a1ag a1a2a3
as 0 q‘w|“2 as asag
as 0 0 q'®las as

a4 0 0 0 q\w|a4

As an example, the entry in second row and the fourth column is a shorthand
for the polynomial Sy 4,4,(q), the g-count of the number of occurrences of
asasg as a scattered subword of w as developed in section 4.

PROPOSITION 3 Let¥ = {a; < ag < --- < ag} and w € *. Suppose the
vector of super diagonal entries of the matrix ¥, (w) is

(m1,2(q), m2,3(q), -+, mr—1,k(q)) € N[g*~".
Then at g = 1, this vector evaluates to
(|w|a15 |w|a2a T |w|ak—1)-

Proof This proposition is a special case of a stronger result that characterizes
the whole matrix ¥,(w) at ¢ = 1 that we give as Theorem 9. .

THEOREM 9 Suppose ¥ = {a; < ag < --- < ax} and w € X*. Consider
wasawordoverI' = {a; < ag < -+ < ag < ag41} and let ¥ (w) be the

resulting Parikh g-matrix in IN[g]**. Then ¥,(w) evaluated at ¢ = 1 is the
Parikh matrix W 4, (w).

Proof Combine Theorem 8, Theorem 3, and Proposition 1. o
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6. Injectivity, inverse, and further remarks

Just as the Parikh matrix mapping, the Parikh g-matrix mapping is not an
injective mapping either. For instance over the ordered alphabet {a < b < ¢}
one has

q q 1
U, (ach) = Vy(cab) =1 0 ¢ 1
0 0 ¢

However, there are instances in which two words can have the same Parikh
matrix, but distinct Parikh g-matrices.

The injectivity of the Parikh matrix mapping was studied in [1]. In particular
it was proved that over a binary alphabet X, a pair of palindromic amiable
words «, 8 have the same Parikh matrix image. The definition of palindromic
amiable pair is as follows:

1. Both «and 3 are palindromes,
2. aand g have the same Parikh vector, i.e., ¥(a) = ¥(5).

For example the words o = aba®ba and 8 = ba*b over ¥ = {a < b} are
palindromic amiables. Therefore as proved in [1], they have the same 3 x 3
Parikh matrix image. We calculate directly that indeed

1 4 4

\IJM2(Q) = lo 1 2] = \I]Mz(/B) 4
0 01

The corresponding matrices given by the Parikh g-matrix mapping ¥, are cal-
culated over the alphabet {a < b < ¢} in accordance with Theorem 9. These
are also 3 x 3 upper-triangular matrices, but with entries from IN[¢]. They are
given by

[ q4 2q2+2q3 1 —|—2q+q2

V() = 0 q’ 1+4+¢q (5)
| 0 0 1
Ka q+q2+2q3+q4 l+g+¢*+¢*

Ty(B) = | O q l1+¢q (6)
| 0 0 1

Clearly, these two distinct matrices reduce to ¥, () = Py, (8) given in
(4) as guaranteed by Theorem 9. Thus the matrices obtained by the Parikh
g-matrix mapping contains finer information that is able to distinguish words
that are equal under the ordinary Parikh matrix map. An alternate generaliza-
tion of the Parikh matrix mapping with additional injectivity properties using
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a different g-analogue of scattered-subwords appears in [2].

The notion of the alternate (signed) Parikh matrix developed in [6] has the
nice property that the inverse of the matrix ¥ a4, (w) is the alternate Parikh
matrix of the mirror image mi(w) of w. This property also carries over to the
case of the Parikh g-matrix mapping with some modifications. Let ¥ = {a; <
ag < --- < ag}. We define a morphism (called the alternate Parikh g-matrix

mapping) ¥, = W'; from X* to a collection of k-dimensional upper-triangular

matrices over Z[q]. U, is defined on X as follows: If U, (a;) = (m ;) 1<ij<k:
then

1 my; =1,

2. miz;=qforl <i<k,i#l,

3. my = —1ifl <k,

4. all other entries of the matrix ¥, (a;) are zero.

ExAMPLE 10 When the alphabet is ¥ = {a < b < c}, then

B 1 -1 0 B g 0 O o qg 0 0
Uea)=]0 q 0|, Te(b)=]0 1 —1],%(c)=|0 ¢q O
0 0 ¢ 0 0 ¢ 0 01

Note that ¥, (a)Ty(a) = Tg(b)T,(0) = Uy(c)Ty(c) = ql3. As an example,
for w = ab®abca, we compute that

T, (mi(w)) = | 0 ¢* —¢*—¢° —¢°
0 0 q°

Then the following result holds.

THEOREM 11 Suppose ¥ = {a; <ap < --- <ag}andw € ¥*. If ¥, and
v, are the Parikh g-matrix, and the alternate Parikh g-matrix mappings from
¥* to upper-triangular integral matrices over Z|g]|, then the k-dimensional
matrix identity

_ 0 gl o .. 0
U, (w)¥y(mi(w)) = : : ()
0 0 gl

holds.
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Proof Omitted. °

It can also be shown that the identity (7) reduces to the matrix inverse iden-
tity of the Parikh matrix mapping of [6] when we extend the alphabet as in
Theorem 9 and put g = 1.
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