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Abstract It is known that a static analysis of π-calculus can be done rather simply and
also efficiently, i.e. in O(n3) time. Clearly, a static analysis should be as precise
as possible. We show that it is not only desirable, but also possible to improve
the precision of the analysis without worsening its asymptotic complexity. We
illustrate the main principles of this efficient algorithm, we prove that it is indeed
cubic and we also show that it is correct. The technique introduced here appears
to be useful also for other applications, in particular, for the static analysis of
languages that extend the π-calculus.
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Introduction
The π-calculus [11, 10] is an algebra of processes that models communications

among agents that share a common channel. When an input and an output operation
synchronize on a common channel, then the bound name of the input gets instanti-
ated to the name sent by the output operation. The algebra also models mobility by
allowing the exchange of channel names among agents.

In a real computation of a π-calculus process, the bound name of an input operation
can be instantiated at most once. However, when one wants to compute statically
all possible behaviours of the process he/she must take into account the fact that an
input action can in general synchronize with many output actions (in different real
computations) and therefore, a static analysis generally associates a set of names to
each input bound name. Thus, in general, a static analysis applied to a process P is
correct if it computes a function ρ that we call name-association such that for each
input operation B = b(v) of P , ρ(v) contains all the names that may instantiate v as a
result of the synchronization of B with some output operations of P . It is easy to see
that a correct static analysis could be designed according to the following scheme:

First compute all the input/output pairs (A, B) of P that may synchronize;

For each such pair (A, B), where A = a〈u〉 and B = b(v), the pair can com-
municate only when ρ(a) ∩ ρ(b) 6= ∅ and when this condition is satisfied, one
accounts for the communication from A to B by adding ρ(u) to ρ(v).
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Such an analysis is surely very simple, but it is also bound to be very poor in terms
of precision, because in general it considers many synchronizations that cannot take
place in real computations. Let us consider this example.

Example 1 In this example we want to model the situation of a client that down-
loads an applet from a server and when this applet requests a connection to some host
with a given IP number, accepts the request only if this IP number meets two condi-
tions: (i) it is the same as that of the server from which the applet was downloaded
and, (ii) it is in a white list that contains the client’s trustworthy servers.

For simplicity we assume that the client C already shares a channel CS with the
server S and a channel CA with the applet A. Channel CW connects C with its white
list W . OK is a message that client C sends to A to signal that it accepts its request.
The applet A sends to C three IP numbers of hosts to which it wishes to connect. The
system is the parallel composition of four processes C|W |S|A where:

C = CS(x).CA(y).CW (z).[x = y].[x = z].CA〈OK〉

W = CW 〈IP1〉 + CW 〈IP2〉 S = !CS〈IPS〉

A = (ν M)(CA〈IPS〉.CA(x).[x = OK].IPS〈M〉 + CA〈IP1〉.CA(x).

[x = OK].IP1〈M〉 + CA〈IP2〉.CA(x).[x = OK].IP2〈M〉)

It should be easy to see that, each test of the client C can be satisfied, but that they
cannot be satisfied together. Therefore there is no execution of the system in which C

sends OK to the applet A. For a static analysis to discover this fact, it is important
that the 2 tests are considered together. The analysis presented below does this and
therefore it will statically discover this fact.

In what follows we consider an input/output pair (A, B) and we assume that A is the
output action a〈u〉 and B the input action b(v). The above example indicates that it
is desirable to have static analyses that consider that pair (A, B) can synchronize only
when they really can synchronize! More precisely, only when:

(i) there is a real computation in which A and B synchronize and moreover,
(ii) if this is the case, then we would like to model this synchronization by adding

to ρ(v) only the name that may instantiate u in the corresponding computation.

These two points cannot be accomplished in general as deciding point (i) is an un-
solvable problem. However, during a static analysis, it is possible to use the name-
association ρ that is being computed in order to approximate safely these two wishes.

Concerning point (i), we can discover that A and B can never synchronize if they
are preceded by a test [x = y] such that ρ(x) ∩ ρ(y) = ∅. By the correctness of ρ

this fact clearly implies that the test is never satisfied. As a matter of fact, it is easier
to reason in the opposite direction, i.e., to conclude that the test may be satisfied in
some real computation only when ρ(x) ∩ ρ(y) 6= ∅. Clearly, if together with [x = y]
also the test [y = z] precedes A and B, then both tests must be satisfied together and
this is possible only when ρ(x) ∩ ρ(y) ∩ ρ(z) 6= ∅ and so on. The tests that precede
A and B, permit to refine ρ into a more precise ρ′. For instance, ρ′(x) = ρ′(y) =
ρ′(z) = ρ(x) ∩ ρ(y) ∩ ρ(z). This refined ρ′ may allow to detect that indeed the
communication between A and B is impossible in real computations. This happens
when ρ′(a) ∩ ρ′(b) = ∅ even though ρ(a) ∩ ρ(b) 6= ∅. Similarly using ρ′, we may
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deduce that certain input actions A = c(w) never synchronize with an output action:
in this case ρ′(w) = ∅. The presence of an input action like A is important for the
precision of the analysis because it implies that all actions that follow A will never
execute. Unfortunately, ρ′ does not carry an analogous information also for the output
actions. In fact, the values that ρ′ associates to the names used in an output action do
not reveal whether the action can synchronize or not.

The aim of point(ii) is approximated by adding ρ′(u) to ρ(v), in place of ρ(u),
where ρ′ is the refined name-association introduced in the previous point.

The notion of satisfaction of tests and input actions and how they can be used to
refine a name-association is illustrated in the following Example 2.

Example 2 Consider process P = [a = r].a(z).[r = z].a〈r〉 and the name-
association ρ such that ρ(a) = {c, d}, ρ(r) = {d, e}, ρ(z) = {e, f}. Clearly, ρ

satisfies both [a = r] and [r = z] since ρ(a)∩ ρ(r) = {d} and ρ(r)∩ ρ(z) = {e} and
shows that a(z) can synchronize with some output action because ρ(z) 6= ∅. However,
ρ does not satisfy the two tests together: ρ(a)∩ρ(r)∩ρ(z) = ∅! From this we can de-
duce that a〈r〉 can never be executed and this consideration may be useful to improve
the quality of the static analysis of a process that contains P .

Consider now a process with two concurrent processes, P = Q |R, where Q =
[a = r].r(z).[z = k].a〈r〉 and R = [l = a].b(v) with the following name-association:
ρ(a) = {c, d}, ρ(r) = {d, e}, ρ(z) = {e, f}, ρ(k) = {f, g}, ρ(l) = {d, e}, ρ(b) =
{c, e}, ρ(v) = ∅. If we consider Q and R independently, then we would deduce
that the action A = a〈r〉 of Q and the action B = b(v) of R are both possible.
However, it is easy to see that these 2 actions cannot synchronize. In fact, in order
for these two actions to synchronize, ρ must satisfy [a = b] together with all the
tests and input actions that precede the 2 actions. Clearly this in not the case here:
ρ(a) ∩ ρ(r) ∩ ρ(l) ∩ ρ(b) = ∅. If, on the other hand, ρ(a) = {c, d, e} (with all other
values of ρ unchanged) then ρ would satisfy the condition and thus we would deduce
that a〈r〉 and b(v) may synchronize and then consider this action in our analysis of P .

The above ideas are rather intuitive and can be used to design a precise static analysis
for the π-calculus. We show that this analysis can also be implemented rather effi-
ciently, namely, we show that its time complexity is cubic in the size of the process
that is analyzed. Also [4] presents a static analysis of the π-calculus that has been
shown in [14] to be cubic. However, the analysis of [4] checks the tests one by one
instead of simultaneously as our analysis and therefore, it is in general less precise.
For instance, it would not be able to infer that the system of Example 1 behaves safely.

In [5] a static analysis is presented for a language slightly different from that of [4]
and of the present article. The main differences of the language considered inS [5]
are that the repetition operator is absent and that the role of tests is played by special
input actions called selective inputs. A selective input, before to accept an input, tests
if the input is in a given set of names. This is in some sense equivalent to group to-
gether many tests. Thus, one could say that in [5] a complementary approach is taken
with respect to the one we follow: in place of making the analysis more sophisticated
by grouping together tests, the language of [5] allows to directly write protocols with
more complex tests. On these protocols a simple analysis obtains results similar to
those that our analysis obtains on the same protocols described with a simpler lan-
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guage. However, it is not difficult to show that all results obtainable with the approach
of [5] can be obtained with ours, but not vice versa.

The rest of the article is organized as follows. Section 1 contains some standard
definitions about π-calculus, some new notation, and a static analysis that uses the
ideas explained in Example 2 for improving the precision of the analysis. This anal-
ysis is very abstract in the sense that it does not specify how its sophisticated tests
are actually performed. Section 2 is devoted precisely to the illustration of how this
analysis can be implemented in cubic time. This is done in 2 steps: a pre-processing
step followed by the static analysis part. Subsection 2 illustrates the theoretical foun-
dations on which the actual implementation is built. The implementation of the static
analysis part is described in Subsection 2. The correctness of the efficient implemen-
tation is discussed in Section 3 and the complexity of the algorithm is discussed in
Section 4. The work ends with Section 5 where we try to link our algorithm with
similar proposals and we point out some directions for future investigation.

For the sake of brevity, only the proof of the main theorem 2 is reported, the proofs
of all technical lemmata are given in [6]. Also the pre-processing phase of the algo-
rithm (and the proof that also this phase is O(n3)) is described in [6].

1 Preliminaries
In this section we first recall the syntax of the π-calculus, [10]. The semantics

of the language is explained only intuitively by means of an Example. A complete
description can be found in [10, 15]. After this we introduce some new notation and
we describe a simple static analysis of the π-calculus.

Definition 1 Let N denote an infinite set of names, ranged over by a, b, x, y, . . . .
Let also τ be a symbol not in N . Processes of π-calculus are constructed according
to the following syntax:

P ::= 0

∣

∣ µ.P
∣

∣ P + P
∣

∣ P |P
∣

∣ (νc)P
∣

∣ [x = y].P
∣

∣ !P
where µ is either a silent action indicated with τ , or an output action a〈b〉, or an
input action a(b). In these actions a is called the subject and b the object of the
action. The “ .” operator indicates sequential execution, the “ +” operator indicates
nondeterministic choice and “ | ” denotes parallel execution. The operator “ !” means
replication and is very important because it replaces recursion. The (νc) operator
introduces private name c. Process 0 does nothing and thus we shorten P.0 into P .

Example 3 Consider process P = a〈x〉.x(v).[v = x].R | a(w).[w = x].w〈x〉.
P consists of two processes that execute concurrently and whose input and output
actions can synchronize. First, a〈x〉 can synchronize with a(w) producing x(v).[v =
x].R | [x = x].x〈x〉. Note that as an effect of this synchronization step, the name
x has been substituted to w and thus the test [w = x] has become [x = x] which
is satisfied. Thus the output x〈x〉 can execute and synchronize with x(v) producing
[x = x].R |0 = R. Clearly, in process P , actions and tests are partially ordered
by the execution order induced by the sequencing operator “ .”. For instance, in
a〈x〉.x(v).[v = x].R, a〈x〉 is executed first, then x(v), then [v = x] and finally R.

In what follows P is a π-calculus process. In our analysis private names are considered
as free names. So we will just ignore them. This causes no loss of precision because
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the fact that a name is private is irrelevant to our analysis. We simply study how
names can propagate inside P . Being able to distinguish the private names from the
free ones may become an issue when considering the problem of approximating the
communications of P with the “outside world”. fn(P ) and bn(P ) are, respectively,
the set of free names of P and that of the bound names of P . We always assume,
w.l.g., that fn(P ) ∩ bn(P ) = ∅ and we call n(P ) = fn(P ) ∪ bn(P ).

Definition 2 Two actions or tests of P are said to be in concurrent positions when
either they occur in a same replicated subprocess !Q or they occur in opposite sides
of a parallel composition Q |R.

PAIR(P) is the set of all pairs (A, B) of actions and tests of P that are in concurrent
positions and such that A and B are not both input or both output actions. We will
also assume that (A, B) ∈ PAIR(P ) only when A occurs to the left of B in the
process P . Thus, if (A, B) ∈ PAIR(P ) then (B, A) 6∈ PAIR(P ).

Example 4 In process P of Example 3, if we call A = a〈x〉, B = x(v), C = a(w)
and D = w〈x〉, the pairs in concurrent positions are (A, C) and (B, D). If we
consider the process !P , then we should add also (A, B) and (C, D).

Definition 3 A name-association is a function ρ : N → PS(N ) (where PS

denotes the power set). Let K be a set of tests and actions, such that their variables
are in N . If n(K) is the set of names contained in K, then the tests in K define an
equivalence relation on n(K) whose corresponding partition is denoted with Π(K).
We say that a name-association ρ satisfies K, when

⋂

x∈W ρ(x) 6= ∅ for all W ∈
Π(K). Observe that this condition also implies that for all input and output actions in
K, if a is the subject of the action and u the object, then ρ(a) and ρ(u) are both not
empty. That ρ satisfies K is denoted with ρ |= K.

The refinement of ρ wrt K is a new name-association ρ′ as follows:

ρ′(z) =

{

ρ(z) if z 6∈ n(K)
⋂

x∈W ρ(x) if z ∈ W ∈ Π(K)
Observe that if ρ 6|= K, then for some x ∈ n(K), ρ′(x) = ∅. Given any name x,
with [x]K we denote the equivalence class in Π(K) that contains x. This operation is
obvious when x ∈ n(K). When x 6∈ n(K), conventionally [x]K = {x}.

Example 2 of the Introduction illustrates the above notions. The following technical
fact is a basis for next results.

Fact 1 Let K be a set of tests and W a non singleton equivalence class in Π(K),
let also S ∈ K such that n(S) ∩ W 6= ∅ then the following 3 statements hold:

1 n(S) ⊆ W ;
2 for any name a ∈ W , [a]K\{S} ∩ n(S) 6= ∅.
3 let S′ be another test in K and assume that a is a name of S and a′ one of S′

and finally, let W ′ be the equivalence class in Π(K) that contains n(S ′). Then
it holds that [a]K\{S′} ∩ [a′]K\{S} 6= ∅ iff W = W ′ = [a]K\{S′} ∪ [a′]K\{S}

Definition 4 For any action or test X of P , with PRED(X) we denote the
set of actions and tests that precede X in P according to the execution order ex-
plained in Example 3 (observe that PRED(X) does not contain X). COND(X) ⊆
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PRED(X) is the set of all the tests that precede X in P . Recall from Example 3 that
the tests and actions in PRED(X) are totally ordered according to their execution
order. For any pair (A, B) ∈ PAIR(P ), PRED(A, B) = PRED(A)∪PRED(B)
and COND(A, B) = COND(A) ∪ COND(B).

The following Example explains the previous Definition.

Example 5 Let P be the following process,
a(x).a(y).a(z).a(w).[x = w].

(

[x = y].b〈x〉 | [x = z].c〈x〉 | [w = z].[w = y].d(k)
)

then PRED(b〈x〉) = {a(x), a(y), a(z), a(w), [x = w], [x = y]}, COND(b〈x〉) =
{[x = w], [x = y]} and the set of actions and tests in PRED(b〈x〉) ∩ PRED(d(k))
is {a(x), a(y), a(z), a(w), [x = w]}. These actions and test precede both b〈x〉 and
d(k). Observe that all tests and actions in the above sets are listed in execution order.

This Section is concluded with a very simple but powerful static analysis for the π-
calculus, that we call in fact the Simple Analysis.

1 Let P be the process to be analyzed and ρ0 be the following name-association:
for each free name x in P , ρ0(x) = {x} and for each bound name y in P ,
ρ0(y) = ∅. Set i = 1 and proceed to the following step,

2 consider any pair (A, B) ∈ PAIR(P ), such that A is an output action a〈u〉
and B an input action b(v). If ρi−1 |= PRED(A, B) ∪ [a = b], let ρ′

i−1 be
the refinement of ρi−1 wrt PRED(A, B) ∪ [a = b] (cf. Definition 3), then
ρi(v) = ρi−1(v) ∪ ρ′i−1(u).

3 if ρi = ρi−1 then stop with output ρSA = ρi, otherwise go back to step 2.

Even though the above analysis is very simple to describe, it contains operations that
seem to require a high polynomial number of steps (in particular, the test whether
ρi |= PRED(A, B) ∪ [a = b] and the computation of ρ′

i−1 in step (2)). It is in fact
fairly easy to see how to perform these operations in O(n5) steps. Observe that the
operations of step (2) of the Simple Analysis that seem to be particularly complex are
exactly those that perform the improvements mentioned in points (1) and (2) of the
Introduction. Improving this bound was for us not easy, but we succeeded and in the
following Sections we report the algorithm we found. This algorithm implements the
Simple Analysis and has worst case time complexity O(n3).

The reader may wonder why in the above step (2) we consider PRED(A, B) and
not COND(A, B). Notice that Π(COND(A, B)) ⊆ Π(PRED(A, B)) and in some
cases the containment is proper and the difference consists of some singletons. This
may happen when PRED(A, B) contains some input or output action with names
that do not appear in any test in COND(A, B). As already observed in the Introduc-
tion (cf. Point (1)), the names in these singletons that are objects of input actions, can
be exploited for improving the analysis. This explains the choice in step (2).

2 The Efficient Algorithm
In this Section we explain how the Simple Analysis of the previous Section can be

implemented efficiently obtaining an algorithm that has cubic worst case time com-
plexity. This algorithm will be called in what follows the Efficient Algorithm.
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The problem is to perform efficiently the tests of point (2) of the Simple Analysis
and the computation of a refined name-association (called ρ′

i−1 in the Simple Analy-
sis). The key idea is that of computing and maintaining all the necessary refined values
throughout the analysis (instead of recomputing them each time they are needed as in
a naive implementation of the Simple Analysis). To this end we introduce a set of new
names whose role is to hold the refined values. Roughly this works as follows. Con-
sider a pair A = a〈u〉 and B = b(v) that may synchronize. The tests and actions that
precede A and B, together with [a = b], determine equivalence classes of names, cf.
Example 2. Call these classes X1, . . . , Xm. For each Xi, a new name ci is introduced
and during the analysis, if ρ is the name-association computed so far, then the value of
ρ(ci) will always satisfy the following relation: ρ(ci) =

⋂

y∈Xi
ρ(y). Thus, ρ(ci) is

the refined value of each name in Xi. Namely, it is the set of names that are assigned
to all the names in Xi and that satisfy all the tests and actions in PRED(A, B) that
have formed the class Xi. The above description is necessarily simplified. In particu-
lar, the new names that are used in the algorithm are not simply ci. For instance, the
new name that corresponds to the class that contains the subjects a and b is cA,B and
the new name that corresponds to the class that contains the object u of the output is
cA↓B . With these new names that hold the refined values of the equivalence classes, it
is possible to implement the actions of point (2) of the Simple Analysis as follows :

(a) the synchronization between A and B is considered by the analysis only when
each ρ(ci) 6= ∅, this guarantees that all actions and tests in PRED(A, B)∪[a =
b] can be executed/satisfied; observe that [a = b] is added to check that A and
B can actually communicate;

(b) the synchronization of A and B is modelled by adding ρ(cA↓B) to ρ(v). Ob-
serve that this is the refined value of u, as requested in point (2) of the Simple
Analysis.

The number of new names introduced is quadratic. However, maintaining the value
of each of these names (and also of those in n(P ) that in what follows will be called
old) takes linear time. This follows from the fact that each new name c depends on
only 2 other names (new or old), say c′ and c′′. This dependency is as follows: when
x ∈ ρ(c′) ∩ ρ(c′′) then x must be also in ρ(c). Moreover, c′ and c′′ are strictly
smaller than c wrt a partial order and thus there is no circularity in these dependencies.
Exploiting this fact, it is possible to maintain the value of each name in linear time.

The test described in point (a) above can also be done very efficiently: a counter
Ready(cA↓B) is initially set to the number of classes in Π(PRED(A, B) ∪ [a = b])
and is decreased by 1 each time the value of ρ(ci) (where ci corresponds to one of the
classes) becomes not empty. When Ready(cA↓B) = 0, the test of point (a) is satisfied
and thus the analysis performs the action of point (b). We have actually implemented
this sophisticated static analysis algorithm. The C++ source is downloadable from the
directory “www.math.unipd.it/˜colussi/Analizer/”.

theoretical foundations
This Section is devoted to the construction of the theoretical foundations of the

Efficient Algorithm and of the proof that it is cubic in the size of P (P is always the
process under analysis). It mainly contains three things:
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(I) The precise definition of the new names that are needed for the Efficient Algo-
rithm together with a partial order on them;

(II) The proof that the value of each new name v depends on that of only two other
names lc(v) and rc(v);

(III) The proof that for each pair (A, B) of input/output action one can compute once
and for all a set X of names, such that the test of point(a) above is performed
by checking that for every name x ∈ X , ρ(x) 6= ∅. It is also important that |X |
is linear in the size of P .

Points (II) and (III) are fundamental for showing that the Efficient Algorithm is cubic
in the size of P . Recall that n(P ) stands for the set of all the names of P , i.e., n(P ) =
fn(P ) ∪ bn(P ), where, w.l.g., we assume that fn(P ) ∩ bn(P ) = ∅. In what follows
these names are called old to distinguish them from the new ones that we are going
to introduce. As explained above, each new name v stands for a set of old names that
is indicated with [v]. This notation is extended to old names x, letting [x] = {x}.
The set of new names that we create for P is denoted new(P ) and consists of two
parts news(P ) and newp(P ). The first part contains new names that corresponds to a
single test T of P (‘s’ stands for single), whereas the second one contains new names
that correspond to pairs (’p’ stands for pair) as follows: these names correspond either
to pairs (A, B) of an input and an output action which are in concurrent position in P

or to pairs (T, T ′) of tests which are in concurrent position in P .

Definition 5 For each test T = [a = b] of P , news(P ) contains a new name cT

that stands for the set of old names [cT ] = [a]COND(T )∪T .

The following is an easy consequence of Fact 1(2) that is useful for the next Lemma.

Fact 2 Let cT be the new name that corresponds to a test T = [a = b], then
[cT ] = [a]COND(T ) ∪ [b]COND(T ).

It is useful to define a partial order on the set news(P ) ∪ n(P ).

Definition 6 The relation � on news(P ) ∪ n(P ) is defined as follows.

for each x ∈ news(P ) ∪ n(P ), x � x;
the old names in n(P ) are unrelated among each other and for each x ∈ n(P )
and y ∈ news(P ), x � y;
for any two names cT and cS ∈ news(P ), cT � cS iff T precedes S in the
execution order.

In what follows we will write x ≺ y to denote x � y and x 6= y.

In the following Lemma we show point (II) for the names in news(P ).

Lemma 1 Let cT be a new name in news(P ), where T = [a = b]. There are two
names (either old or in news(P )) lc(cT ) and rc(cT ) such that [cT ] = [lc(cT )] ∪
[rc(cT )]. Moreover, lc(cT ) ≺ cT and rc(cT ) ≺ cT .

Names in newp(P ) correspond to pairs (A, B) ∈ PAIR(P ) whose names may in-
teract in some way. Interaction may be of two types: either A and B are an output and
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an input action that may communicate or A and B are tests and there is a name in A

and a name in B that are equated by the tests in COND(A, B).
Recall from Definition 2 that pairs (A, B) ∈ PAIR(P ) are such that A is always

to the left of B in P . In this way we avoid the nuisance of having a new name for
(A, B) and another for (B, A), while only one of them is enough for the analysis.

Definition 7 newp(P ) contains the following names:

(a) For each test/test pair (T, T ′) ∈ PAIR(P ), where T = [a = c] and T ′ =
[b = d], and such that [a]COND(T,T ′)∪T ∩ [b]COND(T,T ′)∪T ′ 6= ∅ a new name
cT,T ′ is in newp(P ). This name stands for the set of old names [cT,T ′ ] =
[a]COND(T,T ′)∪T∪T ′ .

(b) For each input/output pair (A, B) ∈ PAIR(P ), where a〈u〉 is the output action
and b(w) is the input action, newp(P ) contains two new names cA,B and cA↓B .
The name cA,B is intended to stand for the set [cA,B ] = [a]COND(A,B)∪[a=b] of
old names, whereas cA↓B stands for the set [cA↓B ] = [u]COND(A,B)∪[a=b].

Notice that in point (b) of the above Definition no assumption is made on which
one between A and B is input and which is output. Moreover, [a = b] is not a test in
P . We add it to COND(A, B) to mimic the fact that the synchronization of A and
B is possible only when this condition is satisfied. Observe that this is coherent with
step (2) of the Simple Analysis, cf. Section 1. In what follow with nn(P ) we denote
n(P ) ∪ new(P ). The partial order � is easily extended to nn(P ) as follows.

Definition 8 The partial order � is extended to nn(P ) adding the following
points to those of Definition 6:

for each name x ∈ newp(P ), x � x;
all old names are smaller than all new names of newp(P );
a name cT is smaller than every name cX,Y and cX↓Y ;
if T1 and T2 are tests and X1 and X2 are either two tests or an input and output
action, then cT1,T2

� cX1,X2
iff for each i ∈ [1, 2] either Ti precedes Xi or

Ti = Xi;
for all name x, if x � cA,B ∈ newp(P ), where A and B are an input and an
output action, then x � cA↓B .

Fact 3 The relation � of Definition 8 is a partial order.

We want now to show point (II) also for the names in newp(P ). To this end we
follow the same strategy that was used in Lemma 1: for any v ∈ newp(P ), we show
that [v] can be split into two parts for which there are corresponding names. The
following simple consequence of Fact 1(c) is useful for this.

Fact 4 Let cT,T ′ be a new name introduced in step (a) of Definition 7 and let T =
[a = c] and T ′ = [b = d]. It is true that [a]COND(T,T ′)∪T∪T ′ = [a]COND(T,T ′)∪T ∪
[b]COND(T,T ′)∪T ′ .

Lemma 2 Let v ∈ newp(P ), there are names lc(v) and rc(v) in n(P )∪news(P )∪
newp(P ) such that [v] = [lc(v)]∪ [rc(v)] and moreover, these names are smaller than
v with respect to the partial order ≺.
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A boolean array Bound indexed on the set nn(P ). Bound[x] = 1 if there is
a name z ∈ n(P ) such that Rho[z, x] = 1.
An array Ready of integers such that for each name v = cA↓B , Ready[v] is
initially set to the cardinality of Pred(v). For each name x ∈ Pred(v), there
is a list isPx that contains v and all other names having x in their Pred set.
Two arrays Lc and Rc indexed on the set new(P ) (to store lc(v) and rc(v))
and for all x ∈ nn(P ) a list isLcx (for “x is Left Component of”) of all names
v such that x = lc(v) and a list isRcx (for “x is Right Component of”) of all
those names v such that x = rc(v).
An array Rho of booleans indexed in n(P ) × nn(P ).

Table 1. Main data structures used by the algorithm.

The following Theorem summarizes what we have shown.

Theorem 1 For each name v in new(P ) there exist names lc(v) and rc(v) (pos-
sibly equal) that are strictly smaller than v wrt the partial order ≺ defined on nn(P ).

Corollary 1 The relation on nn(P ) defined by the lc(v) and rc(v) functions
among names is noncircular.

We turn now to point (III). Consider an input/output pair (A, B) and let a and b be
the subjects of the two actions and u the object of the output one. As explained in (III),
in order for the Efficient Algorithm to check whether the pair (A, B) can synchronize,
all the refined values corresponding to the equivalence classes of Π(PRED(A, B) ∪
[a = b]) should be not empty. In order to perform this test for each such class X there
must exist a new or an old name x that corresponds to the class and thus that will hold
its refined value. This is shown in the following Lemma.

Lemma 3 Let v = cA↓B and let a and b be the subjects of the actions A and B. For
each class X ∈ Π(PRED(A, B) ∪ [a = b]) there is a name x ∈ nn(P ) such that
[x] = X . Moreover, x ≺ cA↓B .

Let us conclude the Section with a notation that will be useful in the next one: For
any name cA↓B , Pred(cA↓B) denotes the names (that were just shown to exist) that
correspond to the equivalence classes of Π(PRED(A, B) ∪ [a = b]).

the implementation
The Efficient Algorithm uses several data structures and is composed of two parts:

a pre-processing part and the static analysis part. For the sake of brevity, we only
describe the static analysis part, in Table 2, and the most important data structures
used in that part, in Table 1. The pre-processing part and all other data structures used
by the algorithm are described in [6]. Data structures in Table 1 have the following
purpose. In the matrix Rho we assume that the first |n(P )| columns correspond to the
old names (i.e., those in n(P )). This matrix holds, throughout the execution of the
algorithm, the name-association computed at each moment.

The name-association ρRho on nn(P ) that corresponds to a given matrix Rho is as
follows: ∀x ∈ n(P ) and w ∈ nn(P ), x ∈ ρRho(w) iff Rho[x, w] = 1. The restriction
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Compute(P )
1 Set to 0 all entries of arrays Rho and Bound.
2 Call Try(u) for all u ∈ fn(P ) (i.e., those u that do not occur in P as the

object of an input action).

Try(u)
1 if Rho[u, u] = 0 then set Rho[u, u] = 1 and call V isitIsC(u, u) .
2 if Bound[u] = 0 then set Bound[u] = 1 and call V isitIsP (u).

Filter(u, v)
1 set Rho[u, v] = 1 and call V isitIsC(u, v).
2 if v = cA↓B , Ready[v] = 0 and Rho[u, w] = 0, where w is the object

of the input action in the input/output pair (A, B) associated to v, then call
Close(u, w).

3 if Bound[v] = 0 set Bound[v] = 1 and call V isitIsP (v).

Transmit(v, w)
1 call Close(z, w) for all z ∈ n(P ) such that Rho[z, w] = 0 and Rho[z, v] = 1.

Close(u, v)
1 set Rho[u, v] = 1 and call V isitIsC(u, v).
2 if Bound[v] = 0 then set Bound[v] = 1 and call V isitIsP (v).
3 call Close(z, v) for all z ∈ n(P ) such that Rho[z, v] = 0 and Rho[z, u] = 1.
4 call Close(u, z) for all z ∈ n(P ) such that Rho[u, z] = 0 and Rho[v, z] = 1.

V isitIsC(u, v)
1 call Filter(u, x) for all x ∈ isLcv such that Rho[u, Rc[x]] = 1 and

Rho[u, x] = 0.
2 call Filter(u, x) for all x ∈ isRcv such that Rho[u, Lc[x]] = 1 and

Rho[u, x] = 0.

V isitIsP (v)
1 for all x ∈ isPv set Ready[x] = Ready[x]− 1 and in case Ready[x] = 0 call

Transmit(x, w) where w is the object of the input action in the input/output
pair (A, B) associated to x (recall that all x ∈ isPv are of type x = cA↓B).

Table 2. The static analysis part of the Efficient Algorithm

of ρRho to the old names in n(P ) is denoted ρ̄Rho. Lc and Rc specify for each new
name v the lc(v) and rc(v). Bound is used to signal when a name x is assigned a not
empty value, i.e., ρ(x) 6= ∅. Ready is defined only for names of the form cA↓B . Its
initial value is the cardinality of Pred(cA↓B). Each time a name x in this set becomes
bound, then Ready[cA↓B] is decreased by 1. On the other hand, isLcx is used to reach
all those names v that have x as lc(v) and similarly for isRcx. isPx lists those names
of the form cA↓B such that x ∈ Pred(cA↓B).
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3 Correctness of the Efficient Algorithm
In what follows we show that the Efficient Algorithm computes the same name-

association as the Simple Analysis of Section 1. In the following Lemma we list some
important facts that are true about the Efficient Algorithm.

Lemma 4

1 For all u ∈ n(P ) and z ∈ nn(P ), Rho[u, z] is set to 1 iff Rho[u, v] = 1 for all
v ∈ [z].

2 Consider any v = cA↓B , and let a and b be the subjects of actions A and B.
The following holds: Initially Ready[v] > 0 and Ready[v] became 0 as soon
as ρRho |= PRED(A, B) ∪ [a = b].

3 Consider any u, w ∈ n(P ) where w is the object of an input action.
Initially Rho[u, w] = 0 and Rho[u, w] is set to 1 as soon as Rho[u, v] = 1 and
Ready[v] = 0 for some v = cA↓B such that the object of the input action is w.

Using the above facts we can now show the correctness of the Efficient Algorithm.
Let ρEA be the name-association computed by the Efficient Algorithm and ρSA that
computed by the Simple Analysis. Clearly, ρEA is ρRho, where Rho is the final matrix
produced by the Efficient Algorithm. Recall that ρ̄EA is its restriction to n(P ).

Theorem 2 ρ̄EA = ρSA

Proof. For this proof it is convenient to consider that ρSA is extended to nn(P ) by
setting for each new name v, ρSA(v) =

⋂

x∈[v] ρSA(x). Moreover, it will be useful
to consider the computation of the Efficient Algorithm and of the Simple Analysis
and the sequence of name-associations produced by the two processes. With ρEAi

we denote the name-associations obtained by the Efficient Algorithm after the first
i changes operated to the initial name-association which is the empty matrix Rho

and thus the empty name-association. Rhoi is the corresponding matrix. Similarly,
ρSAi

denotes the name-association computed by the Simple Analysis after i changes
operated on the initial name-association ρ0. Recall that ρ0 is the identity for the free
names of P and the empty set for the other names.

Let us first show that ρEA ⊆ ρSA. We reason by contradiction. Assume that
there are old names x, y ∈ n(P ) such that y ∈ ρEAi+1

(x), but that y 6∈ ρSA(x).
We assume that the (i+1)-th step introduces this difference for the first time and thus
ρEAi

⊆ ρSA. By Lemma 4(3), from the fact that Rhoi[y, x] = 1, it follows that there
must be a new name v = cA↓B such that Rhoi[y, v] = 1 and Ready[v] = 0. Let
also u be the object of the output action in (A, B). From Lemma 4(2), it follows that
Ready[v] = 0 ⇒ ρEAi

|= PRED(A, B)∪ [a = b] ⇒ ρSA |= PRED(A, B)∪ [a =
b]. Let ρ′SA = ρSA|PRED(A,B)∪[a=b]. Observe now that, since Rhoi[y, v] = 1, from
Lemma 4(1), it follows that y ∈ ρEAi

(d), ∀d ∈ [v] = [u]PRED(A,B)∪[a=b]. Hence,
y ∈ ρ′SA(u) and therefore, y ∈ ρSA(x). This clearly contradicts the initial hypothesis.

Let us now prove that ρEA ⊇ ρSA. Observe that the Simple Analysis starts from
ρ0. It suffices to look at the function Compute of Table 2 to see that ρEA ⊇ ρ0.

Make the following Assumption (*): for the first time at the (i+1)-th step the Simple
Analysis adds y to ρSAi

(x) such that y 6∈ ρEA(x). In order to meet Assumption (*) the
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Simple Analysis must consider an input/output pair (A, B). Assume that the subjects
of the 2 actions are a and b, whereas the object of the output one is u, whereas that
of the input, from the hypothesis, must be x. Moreover, it must be that (A) ρSAi

|=
PRED(A, B)∪[a = b] and if ρ′

SAi
= ρSAi

|PRED(A,B)∪[a=b], then (B) y ∈ ρ′
SAi

(u).
From Assumption (*) and statement (A), it follows that ρEA |= PRED(A, B) ∪

[a = b] and, by Fact 4(2), we derive that (C) Ready[cA↓B] = 0. From (B) and
Assumption (*), it follows that ∀d ∈ [cA↓B ] = [u]PRED(A,B)∪[a=b], Rho[y, d] = 1,
and thus, by Fact 4(1), that (D) Rho[y, cA↓B] = 1. From (C) and (D), by Fact 4(3),
we can conclude that Rho[y, x] = 1 in contradiction with our initial assumption.

4 Complexity of the algorithm
It is quite simple to prove that the Efficient Algorithm requires time O(n3) (where

n is the size of the π-expression P in input): for each function we find a bound for the
number of times it is called and a bound for the time required to execute the function.
The execution time of each function does not include the time required to execute the
function calls it may contain. At the end it suffices to sum everything up in order to
obtain a bound for the total time required by whole Efficient Algorithm.

Observe that there are at most O(n) actions or tests in P and at most O(n) old
names in n(P ) while the cardinality of nn(P ) can be O(n2). The function Compute

is called only once and requires O(n3) time. This time is needed fundamentally for
initializing matrix Rho. Try is called O(n) times (at most once for each name in
n(P )) and its execution requires time O(1). Filter is called O(n3) times (at most
once for each entry of Rho) and it requires time O(1). Transmit is called O(n2)
times (at most once for each name cA↓B) and it requires time O(n). Close is called
O(n2) times (at most once for each pair of names in n(P )) and it requires time O(n).
V isitIsC is called at most once for each pair (u, v) and requires time proportional to
the length of lists isLcv and isRcv. Since the sum of the lengths of all lists isLc and
isRc is O(n2) the total time required is O(n3). For function V isitIsP the reasoning
is more subtle. V isitIsP is called at most once for each name v ∈ nn(P ) and requires
time proportional to the length of the list isPv. Since the sum of the lengths of all lists
isPv is O(n3) (because each name in cA↓B can be inserted in at most O(n) such lists),
the total time required by this function is O(n3).

Since the above functions use the data structures shown in Table 1, it is important
to consider also the cost of constructing these structures in a pre-processing phase.

The pre-processing can be done in time O(n3). A detailed description of the pre-
processing and the proof that it require time O(n3) is given in [6]. Here we explain
why this is the case on a more intuitive level. The pre-processing consists of a dou-
ble visit of the parse tree of the π-expression P in input. For each action or test A

encountered in the first visit we do a second visit to find all action or test B that is in
concurrent position with A. At each step we update a disjoint-set data structure cls

that holds the classes in Π(PRED(A, B)). The data structure cls is augmented by
the name of classes and a list Pred that links names of classes in cls. Since cls and
Pred can be updated in many different ways, they must be copied before an update
takes place. Double visiting the parse tree takes time O(n2) and copying the structures
cls requires time O(n). Thus the total time used is O(n3).
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5 Related work and perspectives
Bodei et al. in [4] proposed a static analysis of the π-calculus that in [14] was

shown to have a cubic time complexity. This analysis considers that any input/output
pair (A, B) can synchronize only when all tests that precede them are satisfied by
the name-association computed so far, but the tests are considered one at the time
and not together as our analysis does. In [13] the analysis of [4] is extended to the
spi−calculus [2] maintaining the same time complexity. This extended version still
handles the cryptographic primitives one at the time as before.

Also Venet [17] and Feret [8, 9] have proposed static analyses of the π-calculus
that are formulated in the abstract interpretation framework, [7]. They first introduce
non standard semantics and then define their analyses as abstractions of these seman-
tics. The semantics they propose are expressive enough to encompass non uniform
analyses, that is analyses able to distinguish among the different copies of a same
replicated subprocess and among the names that these copies can define and transmit.
In fact, these analyses are useful, for instance, for evaluating the resource usage inside
a system. These works are rather different from the present one. They focus on the
expressivity of the analyses rather than on their efficient implementation.

Clearly, many other methods, different from ours and from those mentioned before,
have also been used for proving properties of protocols. These methods include model
checking [12], type systems [2], the use of theorem provers [3, 1]. Often these pro-
posals try to establish more sophisticated properties of protocols than what our static
analysis can compute. However, we believe that any method for inferring properties
of protocols must lay on a precise knowledge of the name-association the protocol
actually produces and this is precisely what our static analysis computes with high
precision and also efficiently.

In the future we intend to substantiate the above statement by extending our analy-
sis in various ways. First of all we will further enhance the precision of our analysis by
including into it the detection of “blocked” output actions, i.e., outputs that cannot syn-
chronize with any input and that, therefore, block the successive actions. Our approach
improves precision by considering the global condition COND(A) ∪ COND(B) ∪
[a = b] under which transmission of a name can take place from the output action
A = a〈u〉 to the input action B = b(w). It is possible to further improve the precision
of the analysis by considering the transmission of each name through sequences of
synchronizing pairs of input/output actions, evaluating together all tests that precede
these actions. We obviously expect that the complexity of this improved analysis will
grow with the length of the action sequences considered.

Finally, we will apply our method to the analysis of extensions of the π-calculus
that include various cryptographic primitives.
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