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Abstract Reversible circuits are a concrete model of reversible computation with applica-
tions in areas such as quantum computing and analysis of cryptographic block
cyphers. In 1980, Toffoli showed how to realize a Boolean function by a re-
versible circuit, however the resulting complexity of such circuits has remained
an open problem. We investigate the reversible circuit complexity of families of
Boolean functions and derive conditions that characterize whether a polynomial
realization is possible.

First, we derive sufficient conditions on families of Boolean functions that
guarantee a polynomial-size reversible circuit realization. Namely, we show
that if a Boolean function can be embedded into an even parity permutation
that has a polynomial-size cycle representation, then the Boolean function can
be realized by a polynomial-size reversible circuit. Furthermore, we provide
a construction for the realization. Second, we provide concrete realizations for
several families of Boolean functions, such as the adder, incrementor, and thresh-
old functions, which do not necessarily satisfy the preceding condition, but still
have polynomial-size realizations; this is important because such realizations
will necessarily form the building blocks of quantum computers.

Keywords: Reversible computation, circuit complexity, Boolean functions
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Reversible circuits, introduced by Landauer [Lan61] and formalized by Toffoli and
Fredkin [Tof80, FT82], are a concrete model of reversible computation that have
come to prominence in the last few years; their applications range from quantum
computing [BBD � 95], where reversibility is a prerequisite, to analysis of crypto-
graphic block cyphers [Cle90, EG83], which use primitives that are nearly identical
to those comprising reversible circuits. Reversible computation is based on a notion
of equivalence between information and entropy that was formalized by Shannon and
Weaver [Sha48, SW49], but dates back to Maxwell’s Demon [Max71] and the work
of Szilard [Szi29]. Namely, the operations comprising a reversible computation may
not discard any information during the course of the computation. In this paper we in-
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vestigate the reversible circuit complexity of families of Boolean functions and derive
conditions that characterize whether a polynomial realization is possible.

Reversible circuits on n lines (wires) realize permutations on the Boolean cube of
dimension n. In 1980, Toffoli [Tof80] showed how to embed Boolean functions into
permutations and thus, be realizable by a reversible circuit. Namely, an n-adic Boolean
function can be embedded into a permutation on a Boolean cube of dimension n � 1.
However, just as in the case of classical circuit complexity, the complexity of the
corresponding reversible circuit is difficult to determine. Some results were obtained
by Cleve [Cle90], who showed that polynomial length compositions of D.E.S.-like
cipher functions—function generators, of fan-in 2—can compute NC1. The construc-
tion is reminiscent of Barrington’s [Bar86] proof that width-5 permutation branching
programs compute NC1. The point of Cleve’s investigation was to determine if such
ciphers could be used as pseudorandom generators.

Alternatively, since most Boolean functions are irreversible, the reversible circuit
complexity of a Boolean function is directly related to the complexity of simulating
irreversible computation reversibly. Bennett [Ben73] first described two simulation
techniques, within the context of Turing machines, that used additional space to record
a check-point based history of the simulation. The first simulation used O � T � time and
O � S � T � space to reversibly simulate a computation that takes T time and S space;
the second simulation used O � T 2 � time and O � S logT ��� O � S2 � space. The latter
simulation was later refined to use O � T 1 � ε � time and O � S logT � space [Ben89, LS90].
Although Bennett’s constructions are of the same spirit as the circuit constructions of
Toffoli [Tof80], it is the space parsimonious reversible simulation of a Turing machine
by Lange et al. [LMT00] that mostly closely resembles the n-line reversible circuit
model.

We show that any even parity permutation on an n-dimensional Boolean cube
whose cycle representation is of size s can be realized by a reversible circuit of size
O � sn � . The key corollary is that any Boolean function that can be embedded into a per-
mutation with a polynomial size cycle representation, can be realized by polynomial
size reversible circuit. Furthermore, the proof is completely constructive, yielding a
simple methodology for designing reversible circuits.

In many cases this bound is not tight because there are many families of func-
tions, such as the incrementor, whose corresponding permutations have exponentially
large cycle representations, but polynomial-size circuit realizations. We exhibit sev-
eral families of functions with such characteristics and derive realizations for them.
Particularly, we focus on functions that are commonly implemented in hardware and
will necessarily need to be implemented as part of a quantum computer, i.e., reversibly.
We consider several families of functions, including incrementors, adders, consensus,
and threshold functions.

In Section 2 we formally define the reversible circuit model and describe how
Boolean functions are embedded within permutations on the Boolean cube. In Sec-
tion 3 we prove our main result and in Section 4 we provide concrete constructions
for several families of Boolean functions. Section 5 summarizes some of the tech-
niques for constructing reversible circuits and finally, section 6 places our results in
the greater context and provides some future directions.
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Reversible circuits comprise a number of wires, called lines, and reversible gates

that operate on the lines. The lines carry binary values, 0 or 1, which are placed on
the lines’ input terminals, are modified by gates operating on the lines, and are read
off the lines’ output terminals; by convention, the input terminals are on the left side
and the output terminals are on the right (see Figure 1). Each gate operates on at most
three lines. All but one of the lines pass through the gate unmodified and are called
control lines. The remaining line, called the toggle line is XORed by the gate with
the conjunction of the values of the control lines. Each gate realize a bijection on the
Boolean cube and each gate is also it’s own inverse.

Let Bn �
	 0 � 1 � n denote the Boolean cube of dimension n, let x 
 Bn denote an n-bit
vector, and let xi denote the ith bit of x. A reversible circuit C, on n lines, is specified
by a sequence of m gates, C � g1g2 ����� gm: the gates are the NOT gate, denoted � i; the
controlled-NOT gate, denoted � j

i ; and the Toffoli gate, denoted � j � k
i , where j � k 
�� n �

specify the control lines and i 
�� n � specifies the toggle line. In the nomenclature of
Coppersmith and Grossman [CG75], the three gates correspond to the 0-, 1-, and 2-
functions, respectively. For example, the circuit in Figure 1 comprises two Toffoli
gates and two NOT gates.

The output of circuit C on input x, is denoted C � x � , and the composition and inverse
of circuits corresponds respectively to the concatenation and reversal of the circuits’
gate sequences; we write CC � to denote the concatenation of two circuits and C � 1 to
denote the inverse of C. Each reversible circuit realizes a permutation on the Boolean
cube Bn, corresponding to an element of the symmetric group S2n . We write C �
σ 
 S2n if C realizes permutation σ and we write C � C � if C and C � realize the same
permutation, e.g., C � � 123 � . For conciseness, we assume that circuit C � xyz � � � xyz � ,
x � y � z 
 Bn and in general that circuit Cσ � σ.

We often use a notion of a controlled circuit in our constructions. An � i � -controlled
circuit, denoted C

� i � , performs two different permutations depending on the value of
line i, leaving the value of line i unchanged. If line i has value 1, the circuit performs
a fixed permutation, otherwise the circuit performs the identity permutation. Analo-
gously, a � i � -controlled circuit performs a fixed permutation only if the value of line
� i � is 0. In general, a circuit is x-controlled, for some x 
 Bk and k � n, if the circuit,
denoted Cx, is controlled by a fixed subset of control lines of size k. If the lines hold
the value x, then Cx performs a fixed permutation, leaving the control lines unchanged,
and performs the identity permutation otherwise. For example, the circuit in Figure 1
is a � 3 � -controlled circuit,
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For conciseness, we use several schematic short forms. First, the k-line controlled
Toffoli gate, k � n � 1, which computes the conjunction of k lines and XORs the
output line. A k-line controlled Toffoli (k-Toffoli) gate can be constructed using O � k �
Toffoli gates [BBD � 95] and is illustrated in Figure 2a. Second, the controlled k-NOT,
comprises k controlled-NOT gates that are all controlled by the same line. In most
cases, we will be using the controlled � n � 1 � -NOT, which is illustrated in Figure 2c.
Additionally, we use blocks to denote a component of a circuit: a component may
either be simple (Figure 2e); controlled (Figure 2d), i.e., controlled by another line;
or a k-function (Figure 2b), i.e., XOR a line with a Boolean function computed on k
other lines. The controlled k-NOT and the k-Toffoli gate are examples of a controlled
component and a k-function.

The size of circuit C, denoted
�
C
�
is the number of gates comprising C. The depth

of C, denoted d � C � is the length of the longest path through the directed acyclic graph
induced by circuit C: the lines correspond to right-oriented arcs, the gates correspond
to vertices of equal indegree and outdegree, the input terminals correspond to vertices
with indegree 0, and the output terminals correspond to vertices of outdegree 0. Two
gates are pairwise independent if there is no path from one to the other in the induced
graph. Since the number gates that are all pairwise independent is at most n, the depth
of a circuit is at most a factor of n less than the size, i.e.,

�
C
� �

n � d � C ��� �C � . Finally,
the size of the cycle representation of a permutation σ, denoted

�
σ
�
, is the number of

points in the permutation that are not fixed, e.g., a transposition has size 2.

��~F} ���	��
��d�d�F� � � �>�
��
 ����� �d�d�5���F�����

To realize a Boolean function by a reversible circuit, the function must first be
embedded into a permutation, because reversible circuits can only realize permutations
on the Boolean cube. In the spirit of Toffoli [Tof80], an � n � c � -embedding of an n-
adic Boolean function f is a permutation σ on an n � c dimensional Boolean cube such
that if y � σx, for any input x (padded with zeros), then yn � c � f � x � . The embedding
is said to be input-preserving if xi � yi, for all i 
�� n � , i.e., the embedding preserves
the input.

In many physical contexts, such as quantum computation, using additional lines—
in addition to the n lines containing the input—is expensive. Thus, we restrict our
attention to embeddings that use the minimum number of additional lines: c � 2. Un-
less f is linear in some variable xi, i.e., f � x � � g � x1 � � ��� � xi � 1 � xi � 1 � � ��� � xn ��� xi, an
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a) A k-Toffoli gate;
b) a k-function component;
c) a controlled n-NOT;
d) a controlled component;
e) a simple component.
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input-preserving n-embedding of f does not exist; and, if f is unbalanced, there does
not exist any kind of n-embedding of f [Tof80]. Thus, in most cases we consider re-
alizations of � n � 1 � -embeddings, i.e., c � 1. In fact, if we require an input-preserving
embedding of an unbalanced function with an odd number of satisfying assignments,
only an � n � 2 � -embedding will suffice.

If f is Boolean function of the form f : Bn � Bk, 1 � k � n, a similar criterion can
be derived. However, many such functions do not have an � n � c � -embedding, where c
is a constant [Tof80]. For example, the multiplication function, which takes two n-bit
strings and yields a 2n bit string, does not have a m-embedding where m � 4n!

On two occasions we consider functions that are of the form f : Bn � Bn, e.g., the
incrementor (counter) function that maps z � z � 1 mod 2n. In this case, even if f
is a bijection, a corresponding n-embedding does not exist because the corresponding
permutation has odd parity. For n � 3, odd parity permutations cannot be realized by
a reversible circuit that comprises NOT, controlled-NOT, and Toffoli gates [CG75].
However, an � n � 1 � -embedding of even parity is possible, and hence can be realized
by a reversible circuit on n � 1 lines.

The reversible circuit complexity of a Boolean function f , is the minimum over all
circuit realizations of all possible embeddings of f . However, determining reversible
circuit complexity of realizing a permutation is not obvious. In the next section we
characterize families of permutations, and hence families of Boolean functions, that
have reversible circuit complexity which is polynomial in n.

�>~ ��� 
�� �g�F�	� 
 � ���[�

In this section we prove the following theorem:

���
�����
����

Any even parity permutation σ on Bn, can be realized by an n-line cir-
cuit of size O � �σ � n � .

The proof comprises three parts: first, we prove that given a circuit that realizes
a permutation that is represented by a single 3-cycle, the circuit can be modified to
realize any other 3-cycle and that the modifications can be accomplished with O � n �
gates. Second, we show that the 3-cycle � 012 � can be realized by a reversible circuit
on n � 1 lines that is of size O � n � . Third, we note that any even parity permutation
whose cycle representation is of size s can be factored into O � s � 3-cycles. Combining
these three facts yields the result. The following lemma and its corollary form the
heart of the first part of the proof, which is summarized in Theorem 4.
��
��������

Let C � 012 � be a reversible circuit on n lines. For any x � y 
 Bn, x �� y
and x � y �� 0, there exists a reversible circuit C of size O � n � , such that the circuit
CC � 012 � C � 1 � C � 0xy � .
Proof: Select two lines i and j, setting u � xix j, v � yiy j, u � v 
 B2, such that u �� v
and u � v 
 	 1 � 2 � 3 � . Such a choice is possible, otherwise x � 0, y � 0, or x � y, none
of which can happen because � 0xy � is a 3-cycle. Call lines i and j the control lines.
The circuit C consists of three stages. Stage one comprises

�
x
� � � u � Toffoli gates plus�

y
� � � v � Toffoli gates. The first subsequence is bracketed by a pair of NOT gates on

line i ( j) if xi (x j) is 0; the second sequence is analogously bracketed if yi (y j) is 0. For
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each k �� i � j, if xk � 1 a Toffoli gate � i � j
k , controlled by lines i and j, toggles line k.

The second subsequence of Toffoli gates is analogously specified. Thus, on input x or
y, all lines but lines i and j are toggled to 0.

Stage two swaps line i with line 1 and line j with line 2. This can be done using
O � 1 � gates. Finally, stage three manipulates lines 1 and 2 since these lines now hold
the value of the control lines. If u �� 1 and v �� 2, then stage three maps u to 1 and v to
2; this also takes O � 1 � gates. Therefore, circuit C maps input 0 to 0, input x to 1, and
input y to 2, using O � � x � � � y � � � O � n � gates. The circuit may permute other points in
Bn, but this is of no consequence.

Since C � � x1 ��� � y2 � ��� � , composing circuit C with C � 012 � in the form of a conjugate
yields

CC � 012 � C � 1 � � x1 ��� � y2 � ��� � � 012 � � x1 � ��� y2 ��� � � � 1 � � 0xy � � C � 0xy � �
which completes the proof.

� � � ����� � �����
Let C � 0xy � be a reversible circuit on n lines. There exists a reversible

circuit C of size O � n � , such that the circuit CC � 0xy � C � 1 � C � 012 � .
Theorem 4 follows easily from the lemma and the corollary.


���
�����
��	��

3 ��


�


� 
�� ��������
���� 
���
�����
����

If C � xyz � is a reversible circuit on
n lines, then for any distinct x � � y � � z � 
 Bn, there exists a circuit C of size O � n � , such
that CC � xyz � C � 1 � C � x � y � z � � .
Proof: Since XORing the input with a constant bit vector can be performed by
O � n � NOT gates, we can transform C � xyz � into C0 ȳ z̄, where ȳ � y � x and z̄ � z �
x. Similarly, for a circuit C � 0 ȳ � z̄ � � , where ȳ � � y � � x � and z̄ � � z � � x � , can be trans-
formed into C � x � y � z � � using O � n � gates. Let Cx be the circuit comprising

�
x
�
NOT gates

such that CxC � xyz � C � 1
x � C � 0 ȳ z̄ � and correspondingly let Cx � be such that C � x � y � z � � �

Cx � C � 0 ȳ � z̄ � � Cx � � 1.
By Corollary 3, C � 0 ȳ z̄ � can be transformed into C � 012 � and by Lemma 2, this circuit

can be transformed into C � 0 ȳ � z̄ � � , also in O � n � gates. Let C1 and C2 be the circuits such

that C � 012 � � C1C � 0 ȳ z̄ � C � 1
1 and C � 0 ȳ � z̄ � � � C2C � 012 � C � 1

2 . Since

C � x � y � z � � � Cx � C2C1CxC � xyz � C � 1
x C � 1

1 C � 1
2 Cx � � 1 �

setting C � Cx � C2C1Cx, which is of size O � n � , completes the proof.

Thus, all 3-cycles are equally hard to realize in the sense that, given a polynomial
size realization of one 3-cycle, any other 3-cycle can be realized by using an additional
O � n � gates. The second step of the proof, Theorem 5, shows how a 3-cycle can be
realized by a reversible circuit of size O � n � .

���
�����
����

For n � 1 there is an n-line reversible circuit C � 012 � of size O � n � .
Proof: If 1 � n � 3 we can construct a reversible circuit that realizes any permutation
and uses a constant number of gates [CG75].

72

(c) 2004 IFIP



For n � 3, observe that permutation � 012 � may be factored into τ1 � � 01 � � 63 � and
τ2 � � 02 � � 63 � . Thus, we need only demonstrate that permutations τ1 and τ2 can be
realized in O � n � gates.

First, the permutation � 01 � � 23 � (respectively � 02 � � 13 � ) may be realized by O � n �
gates. The circuit comprises three stages: a negation, followed by a toggling, followed
by a negation; each stage requires O � n � gates. Stages one and three negate the n �
2 lines 3 � ����� � n. The middle stage comprises an � n � 2 � -Toffoli gate, controlled by
lines 3 � ��� � � n, that toggles line 1 (respectively line 2). Let C � 01 � � 23 � � � 01 � � 23 � and
C � 02 � � 13 � � � 02 � � 13 � respectively.

Next, we construct a reversible circuit C � 01 � � 63 � that realizes permutation � 01 � � 63 � .
The reversible circuit Cσ1 � � 1 � 1 � 2

3 � 1 realizes a permutation that transposes 2 and
6 and whose fixed-points include all points that are congruent to 0, 1, or 3 modulo 4.
Since σ1 � 01 � � 23 � σ1 � � 01 � � 63 � , therefore C � 01 � � 63 � � Cσ1C � 01 � � 23 � Cσ1 � 1.

Similarly, we construct C � 02 � � 63 � . The circuit Cσ2 � � 2 � 1 � 2
3 � 2 transposes points

1 and 5, with the fixed-points comprising all points that are congruent to 0, 2, and 3
modulo 4. Using conjugation, we construct circuit C � 02 � � 53 � � Cσ2C � 02 � � 13 � Cσ2 . The

circuit Cρ � � 2 � 3
1 � 1 � 3

2 � 2 � 3
1 , switches the values of the lines 1 and 2, using line 3 as

the control. Permutation ρ transposes 5 and 6; only points congruent to 5 or 6 modulo 8
are permuted. Since ρ � 02 � � 53 � ρ � 1 � � 02 � � 63 � , therefore C � 02 � � 63 � � CρC � 02 � � 53 � C � 1

ρ .
The required circuit is C � 012 � � C � 01 � � 63 � C � 02 � � 63 � is of size O � n � .

In conjunction with Theorem 4, we get the following two corollaries.

� � � ����� � �����
Any 3-cycle can be realized by a reversible circuit on n � 1 lines of

size O � n � .
� � � ����� � �����

A permutation on Bn comprising two disjoint transpositions, can be
realized by a reversible circuit on n lines of size O � n � .
Proof: This follows from the fact that � ab � � cd � � � abc � � cad � .

We note that every even parity permutation σ can be factored into
�
σ
� � 1 transpo-

sitions and that by Corollary 7, any pair of transpositions can be realized with O � n �
gates. Hence, every even parity permutation σ has a reversible circuit realization of
size O � �σ � n � , which is the statement of Theorem 1. Thus, any Boolean function that
has an embedding with a polynomial size cycle representation can be realized by a
polynomial size reversible circuit. Unfortunately, the converse is not true. There are
many families of Boolean functions, such as the negation of a projection, and the in-
crementor, that have an exponential size cycle representation but a concise reversible
circuit realization. In the next section we detail realizations for several of such families
of functions.

� ~ ����� �U�F� �����F�����
	��/���d� � 
L� 
�� 
 � �F��
 �����F�����
Two common families of functions that are ubiquitous in digital circuits are the

incrementor family, which includes the decrementor and the adder, and the threshold
family, which includes such variants as the conjunction, the disjunction, the majority,
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and the consensus. We first describe how to realize an incrementor, or more precisely,
a near approximation of one. The adder can then be built from a number of incremen-
tors.

The incrementor presents an interesting challenge for several reasons. First, its cy-
cle representation is large, comprising all 2n points of the Boolean cube. Second, even
though the incrementor is a bijection, it cannot be realized (in full) by a reversible
circuit because the corresponding permutation has odd parity [CG75]. Thus, at best,
the incrementor can only be approximated by a reversible circuit. Even though the cy-
cle representation is large, various approximations of the incrementor can be realized
efficiently: our realization is of size and depth O � n2 � .
� ~F} � 
 �
�F� 
 �����[����� ��� �Q�P�[��� � ���1�7� 
 � 
 ������� �

Since a full incrementor on Bn is impossible [CG75], we begin by constructing a
half-incrementor that performs a full increment on the subspace Bn � 1 and is repre-
sented by two disjoint cycles of the form

π � � 01 � ��� 2n � 1 � 1 � � 2n � 1 2n � 1 � 1 ��� � 2n � 1 � �
By concatenating this realization with another small circuit, we construct a nigh-
incrementor, which corresponds to the permutation

π � � � 01 ��� � 2n � 1 � 2 � �
i.e., performs the operation z � z � 1 mod 2n � 1 rather than mod2n.

The half-incrementor can be realized via a sequence of k-Toffoli gates, where k �
n � 2 ��� � 0. Observe that an incrementor modifies the ith least significant bit of the
input if and only if the conjunction of the i � 1 least significant bits of the input is
equal to 1. Thus, the circuit comprises n � 1 components (k-Toffoli gates), where the
jth gate is an � n � 1 � j � -Toffoli gate that negates line n � j and is controlled by the
lines 1 � ��� n � 2 � j; see Figure 3.

The nth line of the circuit in Figure 3 is required in order to realize the � n � 2 � -
Toffoli gate. The line is used as a temporary register and retains its original value by
the end of the computation of the � n � 2 � -Toffoli gate. Via straightforward induction
on n, it is easy to see that the circuit realizes permutation π. Since the realization of
each k-Toffoli gate comprises O � k � normal Toffoli gates (2-Toffoli gates) [BBD � 95],
the half incrementor may be realized in O � n2 � gates. It follows that if we use an
additional line, then a complete incrementor can be realized, otherwise, the best we
can hope to realize is a nigh-incrementor.

�7X �DR-CN=��  
A half-incrementor circuit.
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A nigh-incrementor circuit.
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The nigh-incrementor is realized by concatenating an additional circuit onto the
one that realizes a half-incrementor. Since the nigh-incrementor corresponds to the
permutation π � , let ρ � π � 1π � � � 0 2n � 1 2n � 1 � , and thus the circuit CπCρ � Cπ � ,
depicted in Figure 4, realizes the nigh-incrementor. By Corollary 6, the complexity of
Cρ is O � n � . Hence, the circuit complexity of the nigh-incrementor is also O � n2 � . The
half-incrementor is also the basic component in the construction of the adder.

In contrast to the incrementor, the adder requires no additional lines; this is because
the adder corresponds to an even parity permutation. An adder that takes two n-bit in-
puts, on 2n lines and outputs the result on the latter n lines, n � 1 � ��� � � 2n, and the first
summand on the former n lines, 1 � ��� � � n. The adder comprises a sequence of n con-
trolled half-incrementors; see Figure 5. The kth half-incrementor is controlled by line
k, k 
$� n � , and increments the n � k most significant lines of the second summand, i.e.,
the increment is performed on lines n � k � ��� � � 2n. This follows from the observation,
that adding 2 j to an n-bit value corresponds to performing an increment on the n � j
most significant bits. The adder does exactly that, performing a controlled increment
for each of the n bits of the first summand. Since each half-incrementor can be realized
in O � n2 � gates, the entire adder can be realized in O � n3 � gates.

Unfortunately, there seems little that can be done to reduce this bound. For ex-
ample, implementing a ripple adder is difficult because each stage of the ripple adder
loses information—the preceding carry—implying that in order for a ripple adder cir-
cuit to work reversibly, all carry information needs to saved; we know of no way to
accomplish this.
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Quantum computing is inher-

ently a probabilistic model of computation. Therefore, threshold functions, including
the consensus function, are themselves necessarily useful in quantum computing. Ex-
cept for one case—a majority of an odd number of variables—none of the threshold
functions have an n-embedding. However all threshold functions have an n � 1 em-
bedding, and in many cases an input-preserving one. The threshold functions that
are easiest to realize are the consensus, conjunction, and disjunction functions on n
variables.
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The consensus function evaluates to 1 if and only if all n variables have the same
value. In fact, this function has input-preserving � n � 1 � -embedding comprising two
transpositions: � 02n � � 2n � 1 2n � 1 � 1 � . Thus, by Corollary 7, consensus has a con-
cise realization of size O � n � . On the other hand, the conjunction function—as well
as its dual, disjunction—do not have an input-preserving � n � 1 � -embedding because
the embedding would be an odd parity permutation, comprising one transposition:
� 2n � 1 2n � 1 � 1 � . However, there are many nearly input-preserving embeddings, like
� 12 � � 2n � 1 2n � 1 � 1 � , whose complexity, by Corollary 7, is also O � n � .

More complicated threshold functions can be realized by composing the ∑n
i � k

� n
k �

transpositions, � xx � � , where
�
x
���

k and x � � 2n � x; each transposition corresponds
to a 1 in the threshold’s truth table. We assume that k

�
n
�
2 since computing the

dual only requires an additional O � n � gates. This yields realizations of size O
��� n

k � n �
for threshold function Tk � n, k

�
n
�
2, where n is the number of variables and k is the

threshold. However, the resulting realization are not necessarily obvious. We present
a recursive construction that yields realizations with the same asymptotic complexity,
but with a more analyzable structure.

A realization of threshold function Tk � n comprises two simpler threshold function
realizations. The two components of a realization of Tk � n are a controlled realization
of Tk � 1 � n � 1, and a controlled realization of Tk � n � 1; see Figure 6.

If line n has value 1, then the circuit needs only to check that the weight of the
remaining n � 1 lines is k � 1 or greater. The first controlled component, which realizes
Tk � 1 � n � 1, performs this function. Otherwise, if line n has value 0, the weight of the
remaining n � 1 lines must be k or greater if the threshold is to be met. The second
controlled component—a Tk � n � 1 that is controlled by the negation of line n—performs
this task. Each of the components are realized in the same way; the base cases, T1 �m and
Tm � 1 �m, are simply disjunctions and conjunctions over m variables, where 1 � m � n.

The complexity of this construction, particularly for the majority function, is expo-
nential in n. The recurrence relation R � k � n � � R � k � 1 � n � 1 � � R � k � n � 1 � describes
the complexity of the construction—each of the two terms includes one of the two
additional NOT gates. The boundary conditions are R � 1 � m � � R � m � m � � cm, where
c is constant factor. Thus, the complexity of the realization of Tk � n, is O

��� n
k � k � . Not

surprisingly, the complexity of the realization is the same for both constructions. The
threshold function is a prime example characterizing the application of Corollaries 6
and 7. Namely, that many Boolean functions have recursive realizations. The corol-
laries are useful for creating realizations of the base cases, which are then composed
to yield the entire realization.

��~ � 
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Three repeatedly used mechanisms for realizing circuits are commutators, conju-

gates, and “don’t cares”. The commutator of two circuits �Cσ � Cτ � � CσCτC � 1
σ C � 1

τ —
assuming that permutations σ and τ do not commute—is a mechanism for combining
two circuits, which are controlled by distinct sets of control lines, into one that is con-
trolled by union of the control lines, e.g., Barenco et al. [BBD � 95] used this approach
to construct � n � 2 � -Toffoli gates.
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The conjugate of one circuit by another, CσCτC � 1
σ , preserves the cycle structure

realized by Cτ, but changes the points within the cycles. This mechanism is useful
for massaging a circuit that does ‘almost the right thing’ into one that performs the
required permutation. Conjugation was heavily used in the proof of the main result,
particularly in the construction and transformation of 3-cycles. Conjugation decouples
circuit structure from input representation, i.e., if the structure of the permutation that
is realized by the circuit is correct, then the circuit can easily be adapted to work on
the right set of inputs with a small amount of additional circuitry.

An input-preserving realization of the conjunction function corresponds to a singe
transposition—an odd parity permutation. Since an odd parity permutation cannot be
realized by a circuit on four or more wires [CG75], an even permutation, comprising
two transpositions, is used. The additional permutation affects two other points of
the input but does not affect the output; namely, we sacrifice the input-preserving
property to achieve the realization. In a sense we take advantage of the fact that we
“don’t care” what the outputs of the input carrying lines is, provided that the line
carrying the output value is correct. This approach is similar to the Karnaugh-maps
method [Kar53], which is used for optimizing general combinational circuits.

�>~ � ��� �7��� � �F���

Reversible circuits are a concrete model of reversible computation that also satisfy
the underpinnings of quantum computation; namely, quantum computation must be
reversible. Since classical Boolean functions will necessarily comprise some building
blocks of a quantum computer, determining how these functions can be reversibly
realized is an important problem. We have shown that if a Boolean function f can
be embedded into a permutation σ on an n-dimensional Boolean cube, such that the
cycle representation of σ is of size s, then function f can be realized by a reversible
circuit of size O � sn � . Furthermore, we showed how these results can be applied by
detailing realizations of several families of Boolean functions such as incrementors
and threshold functions.

One of the motivations of this work is quantum computation. One can ask how
quantum circuits—which were introduced by Feynman [Fey86] and formalized by
Deutch [Deu89]—compare to reversible circuit. In 1995, Barenco et al. [BBD � 95]
showed that quantum circuits can realize all permutations on an n-line circuit. Thus,
not only are quantum circuits strictly more powerful than reversible circuits, they can
also be more concise. However, the issue of whether quantum circuits are exponen-
tially more powerful than reversible circuits remains open. Although, the famous
factoring algorithm of Shor [Sho97], may indicate an affirmative answer, the result of
Valiant’s [Val01] indicates that in many cases the answer is negative. Since quantum
circuits can simulate reversible circuits with no overhead—the Toffoli and NOT gates
are commonly included in the basic set of quantum gates [BBD � 95]—the results in
this paper are also applicable in the quantum setting.

There is a useful analogy between our result and the fact that functions with heavily
unbalanced truth tables have concise circuit realizations. Namely, if the ratio of 1s to
0s in the truth table is O � 2 � nnc � or Ω � 2nn � c � for some constant c, then the number of
terms in the corresponding disjunction—and the number of transpositions realized by
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the corresponding reversible circuit—is small. However, a function whose truth table
is relatively balanced may also have a small realization.

Unfortunately, if a Boolean function f is nearly balanced and has an embedding
whose cycle representation is exponentially large, there is no way to determine if f
has a polynomial-size reversible circuit representation. For example, an n-line cir-
cuit comprising a single NOT gate realizes a permutation whose cycle representation
comprises 2n � 1 disjoint transpositions!

One possible approach is to partition the transpositions into equivalence classes
based upon the behaviour of the transposition on a lower order Boolean cube. For
example, a NOT gate on the first line of a circuit performs the permutation � 01 � on a
one line circuit, � 01 � � 23 � on a two line circuit, and ∏i � 0 2n � 1 � 2i 2i � 1 � on an n-line
circuit; all belong to the same equivalence class. Put another way, if a permutation
can be projected onto a lower dimensional Boolean cube, and the sub-cube can be em-
bedded into the original Boolean cube to yield the original permutation, then both the
projection and original permutation belong to the same equivalence class. The com-
plexity of realizing any element of the class is equal to the complexity of realizing the
smallest element. In the example above, the NOT equivalence class has a complexity
of 1, regardless of n. If a permutation can be factored into representatives of equiva-
lence classes, then the complexity of realizing the permutation is simply the sum over
the complexities of each of the representatives.

Even this is insufficient, because the nigh-incrementor, has a cycle representation
that comprises a single exponentially large cycle. Yet, as we have shown, the nigh-
incrementor has a concise realization. Unlike in the preceding case, projecting the
permutation onto a lower dimensional Boolean cube does not work. Factoring a per-
mutation into representatives is itself a difficult problem. For example, the decomposi-
tion of the nigh-incrementor into a 3-cycle and a half-incrementor is not at all obvious
without a priori knowledge.

Finally, we note that a reversible realization can easily be realized by an irreversible
circuit whose size and depth is only a constant factor larger than the reversible re-
alization. In essence, a bound on the reversible complexity of a Boolean function
automatically yields a bound on the classical circuit complexity of the function; the
converse, is not true [LV96, LTV98, BTV01]. Thus, determining if a Boolean function
has a concise reversible circuit realization remains an open an challenging problem. In
fact, a simpler question should be answered first: can the n-adic majority function be
efficiently realized by an � n � c � -line reversible circuit, where c is a constant? Alterna-
tively, either improving the realization of the half-incrementor or proving a quadratic
lower bound would also be of great interest.
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[LTV98] M. Li, J. Tromp, and P. Vitányi. Reversible simulation of irreversible computation.
Physica D, 120:168–176, 1998.
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