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Abstract A Boolean function is calleshormalif it is constant on flats of certain dimen-
sions. This property is relevant for the construction and analysis ptasys-
tems. This paper presents an asymmetric Monte Carlo algorithm to determine
whether a given Boolean function is normal. Our algorithm is far faster tife
best known (deterministic) algorithm of Daueh al. In a first phase, it checks
for flats of low dimension whether the given Boolean function is constant o
them and combines such flats to flats of higher dimension in a second. phase
This way, the algorithm is much faster than exhaustive search. Maretee
algorithm benefits from randomising the first phase. In addition, by atiay
several flats implicitly in parallel, the time-complexity of the algorithm decrease
further.
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1. Introduction
1.1 Motivation

Boolean functions and maps play a central role in cryptalddpey are basic build-
ing blocks of bit-oriented block and stream ciphers. In otdeconstruct secure cryp-
tographic ciphersi,e., ciphers which resist all known attacks, it is important tiedy
the structure and behaviour of Boolean functions.

Normality of a Boolean function is the property which deteres if the function
is constant on a flat of dimensidm/2]. This concept was introduced by Dob94, in
order to construct highly nonlinear balanced Boolean fonst Later, this property
was used to distinguish different classes of bent functidwsthe first bent function
which is non-normal occurs for dimension 14 (Can03), we ree@ighly optimised
algorithm for determining the normality of Boolean funet#o This is non-trivial as
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the total number of flats increases exponentially for insirgadimensiom (MWS91).
Table 1 lists the number of flats of dimensipm/2]; this clearly shows that even for
moderate dimensions: (> 13...15) establishing normality by exhaustive search is
infeasible.

Table 1. The number of flats of dimensior | to test for different dimensions

n 8| 9(10|11|12| 13|14 |15|16| 17| 18| 19| 20
log,(#flats) || 22 | 26 | 32| 37 | 44 | 50 | 58 | 65| 74 | 82 | 92 | 101 | 112

1.2 Related Work

The first attempt for determining the normality of a Booleandtion, better than
exhaustive search, is due to DDL03. The main idea of thewordhgn is to search
exhaustively all flats of small dimension on which the fuoitis constant and then to
combine these to flats of higher dimension.

1.3 Achievement

In our algorithm, we replace the exhaustive search throlidlats of small dimen-
sion by a random search. This has several advantages ovalgtrithm of Daum
et al. First, we do not need a unique representation of flats whicinséess condi-
tions to test and therefore a lower time complexity. Sectimelnumber of repetitions
needed to determine with high probability that a functionas-normal, is far smaller
than an exhaustive search on all flats of small dimensiondct..2). Our algorithm
is of theasymmetric Monte Carltype and may output “non-normal" with probability
2~¢ for a normal function and some confidence lewet N. The output “normal” is
always correct. This asymmetric Monte Carlo algorithm hézs amaller running time
than the deterministic algorithm of DDL0O3 — even with a razsule error-probability
(c = 80 in our case).

1.4 Outline

This paper is organised as follows. In Sect. 2, we introdheebasic definitions
together with a description of the main ideas in our algaomitfSect. 3 presents more
details and explains several optimisations for our alpatit In Sect. 4, we give a
detailed complexity analysis of the algorithm and compheetotal time complexity
of our algorithm with the time complexity of the previous atghm from DDLO3.
This paper concludes with Sect. 5.

2. Background

In this section we present some definitions and a simplifigdridhm to test the
normality of a Boolean function.
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2.1 Definitions

Before we can describe our algorithm, we need to define deviejects. We start
with vectors and vector spaces and finish with some defitamncerning Boolean
functions.

Let a vectorz € F% be represented by thetuple (u,_1, ... ,ug) with the coef-
ficientsu; € Fy from the field with 2 elements. Lety,... ,u; € F§ bek linearly
independent vectors. Then they form the base of the subspace

<U>:=<uy,...,u> = {11 @ ... D apuy | o; € Fa}.

Here, the dimension ofU > is k. For a given vecton € %, we represent the coset
of this subspace b¥/; := a® <U>. Throughout this paper, we call the co$&t a
flat. The vectom of the flatUz is called theoffsetof this flat. In addition, two flats are
said to beparallel if they are cosets of the same subspadé>, i.e, all flats of the
form Uz, @ € F§ are parallel flats by this definition. Finally, we denote teedf all
flats of dimensiors by Flat,, i.e,

Flat, := {Uz | a € Fy, <U> C F}, dim <U>= s}.

We now move on to Boolean functions. A Boolean functjois a mapping from
F% into F5. The property of normality for a Boolean functighis defined as follows:

DEFINITION 1 A Boolean functiory : F; — T, is callednormalif there exists a
flat Wz C F% of dimension[n/2] such thatf is constant oriVz, i.e.,Vw € W5 :
f(w) = cfor some fixed € {0,1}. We call the flall; a witnessfor the normality of
the functionf.

As we see from Definition 1, the property of normality is rethto the question
of the highest dimension of the flats on which the functfois constant. As a con-
sequence, it is natural to generalise the previous definiiothe introduction ok-
normality (Dub01; Car01):

DEFINITION 2 For a natural numbet : 1 < k < n, a Boolean functiory : F} —

Iy, is said to be %k-normal" if there exists a flat; € Flat, such thatf is constant
onVg, i.e Vo € Vg : f(v) = cfor some fixed € {0,1}. We call the flati; a

“ k-witness" for the normality of the functigh

Remark:It is clear that a constant functiof(z) = ¢,VZ € Fy, ¢ € Fq is n-normal.
An affine functionf(z) =a -z & b,Vz,a € F4,b € Fy is (n — 1)-normal, because it
isnormalontheflat$z : a-z@®b =0} and{z : a- T & b = 1} of dimensiom — 1.

2.2 A Simple Algorithm

The previous section shows that it is important for the diédiniof normality and
k-normality,i.e., for a given dimensiom := k (k-normality) ore := [n/2] (ordinary
normality), to find a withes$l; € Flat.. To ease the understanding of the algorithm
of Sect. 4, we start with a highly non-optimised version dtitFig. 1). Both algo-
rithms are based on the observation made by DDLO03, that aeBodlinction which
is constant on a fldt/’z is also constant on all flats containediiry, i.e., fjw, = cfor
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Figure 1. Simplified Algorithm for Checking Normality

Input:  functionf, start dimension, end dimensiom, repetitions-
Output: 1 if the function ig-normal
for i« 1tordo
pick a flatUz € Flat, at random
if fiu, = cfor somec € {0, 1} then SearchFurthet(, ¢)
endfor

procedure SearchFurthet(s, )

c= f|UE

if dim Uz = e then
OUTPUT 1

endif

forall b € F3 \ U do
if (fju, = ¢) then SearchFurthet{® <U,a & b>, )
endfor
endproc

somec € {0,1} implies fjy. = cforall V;; C W5. We call the flatl; a sub-witness
of W5.

Our algorithm starts with a randomly chosen flat of dimensions, the starting
dimension If this flat is a sub-witness, the functighmust be constant on it. So, if
the functionf is constant on the fldi7, this is a possible candidate for a sub-witness
and we search for a parallel flat, on which the function is constant, too. Both flats
Uz, U3 can now be combined to a flat of higher dimension, narnely <U,a © b>.

We repeat this process recursively until we reach the “ermédsion’e. In this case,
we have found a witnedd’; and output 1.

Depending on the “confidence level'we want to achieve, we need to repeat the
above algorithm several times. The valuesfore., the number of repetitions, depends
onc. We discuss the choice ofin Corollary 10 (cf Sect. 2).

3. Optimisations

After given a short outline of our algorithm, we show diffetevays of optimising
it.
3.1 Complement Vector Space

There are in tota®™ — 2° parallel flatsUz,a € F}\ <U > for a given subspace
<U> of dimensions. However, some parallel flats are equivalent as they cotttain
same points.

(c) 2004 IFIP



55

ExAMPLE 3 Consider some parallel flats of the following subspace ofdision 2
which is defined by U> := < (0,0,1), (0,1,0) > C F3.

(1,0,0) & <(0,0,1),(0,1,0)> = (1,1,0) & <(0,0,1),(0,1,0)>
= (1,1,1) ® <(0,0,1),(0,1,0)>
(1,0,1) & <(0,0,1),(0,1,0)>

As a consequence, the parallel flats can be divided into afguive classes. Therefore,
we use theomplemenof a subspacelU>, i.e., the subspaceU> which satisfies

<U> @ <U>=Fy and <U> N <U>= {0}.

This allows us to determine the representatives of the atprice classes of the par-
allel flats, namely the flats7, for @ €¢<U>. Because the dimension ef/> is equal
ton — s, there are in tota2™ ¢ different parallel flats. To compute the complement
<U > of a given subspace U > efficiently, we make use of thBermuted Gauss
Basis(PGB) of a subspace. To define the PGB, we need to introducentieept of
left-most-one of a vector first.

DEFINITION 4 For agiven vectol: = (up—1,.- .. ,ug), we define théeft-most-one
as the position of the left-most one in its representation:

v(@):=min{i € {-1,... ,n—1} |u; =0 for i<j<n}.
DEFINITION 5 The vectordiy, . .. ,u; form a PGB basis iff
v(w) #v(ug), 0<i<j<n.

Remark: The name Permuted Gauss Basis is motivated as follows. iRigirdbout
the base vectorsy, ... ,u; as a matrix, we would perform Gaussian elimination on
it, without swapping rows. The result would not be a triamgudtructure but a row
permutation.

For a subspace U >, we denote the set of the different left-most-ones of its ele
ments

YT(<U>) :={v(u) | ue<U> \{0}}.

The complementU> of a subspace:U> where<U> is in PGB can be computed
as follows:

<U>={a € Fy |a; =0, wherei € T(<U>)}.

3.2 Random Points instead of Random Bases

Instead of selecting a random flat with a PGB, we chagas¢ 1) points at ran-
dom. This is cheaper than selecting a vector space at randhich satisfies the PGB-
criterion. In addition, we only need to transfer a se{oft- 1) points into a PGB if
the functionf is constant on the corresponding flat. As this only happetis pvbb-
ability 272"+, we obtain very low costs on average. Fgpoints, we can compute
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Figure 2.  Algorithm for computing the PGB of a set of points

procedure ComputePGBg,, ... ,p,)

Input: s pointsp,, ... ,p,

Output: a PGB ofthe,,... D,

for k — 2to s do

while v(5,) € {v(py). ... .v(By_1)} do
fori—1tok—1do
if v(p;) = v(py) thenp,® — p;

endproc

the PGB by the iterative algorithm from Fig. 2. The pajigtis the offset of the flat
Do ® <Py,...,Ps> and has to be reduced as outlined in the previous section.

Finally, we have to check whether tie 4+ 1) points form a flat of dimensios.
The contrary happens only with very small probability:

(2n)(2n _ 1) L (2n _ 25)/2n~(s+1).

Using the following strategy, we can reduce the running tohthe algorithm fur-
ther: instead of pickings + 1) points at random and evaluate explicitly if they form
a flat of dimensions on which the functionf is constant, we do this implicitly in
parallel:

m Pick(2s + 1) points at random
= Evaluatef on these points

m f exactly (s + 1) points evaluate to 1 (resp. to 0), check if the corresponding
flat yields the constant 1 (resp. 0) on the functjon

Thisimplicit evaluationstrategy exploits different observations. First, we asstimt
we can form a total offflats:= (2;;“11) independent flats of dimensisrusing a set of
(2s + 1) points. This way, we can decrease the number of repetitiprikib factor.

In addition, we observe that a set (s + 1) points will yield at most one flat of
dimensions on which the functionf is constant, if(s + 1) points in the set evaluate
to 1 (resp. 0) on the functiofi. However, the probability for this event is rather high,

namelyPr(only one flat).= 2;:1{11) .

But there is a price to pay for this strategy: we always neegetform (2s + 1)
evaluations of the functiofi and also the same number of random calls.

Remark: Itis natural to generalise this idea to other values {{2an-1). However,
in this case we do not obtain such a good trade-off betweefatter #flatsand the
workload to check the corresponding flats. The ch¢iset1) is optimal for the given
problem.

3.3 Combining

In the original algorithm, we searched for all parallel flatsl started a recursion on
each of them. This is obviously superfluous as we will find #m@ea witness several
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times this way. As we know from the previous section, we wiltain at leasg¢—*
parallel flatsl- on which the function is constant. Heredenotes the end-dimension
ands the start-dimension.

To avoid this costly computation, we use a different stnatégsed on DDLOS:
instead of recursively searching for all parallel flats ajHer dimension, we com-
bine flats of low dimension to obtain flats of higher dimensidihis is based on the
following observation:

(Bi ® <U>)U (Ej ® <U>) =b; ® <U,b; @Bj> .
Hence, we only need to consider pats, b;) € <U> x <U > which lead to the
same sum and then combine them recursively until we obtaat afflimensiore. To
do this efficiently, we introduce™ lists (depending on a vectar € F3) which hold
an offset for each possible suirg., Append.>®%  b;). In the following section, we

develop a branching condition for the combine method, whitdws to decrease its
running time even further.

3.4 Branching

Let the functionf take a constant valuee {0, 1} on the flatUz of dimensiond.
Denote withP(Uz) the set of all flats parallel t&z on which the function yields the
same constant. The following branching condition definethieycardinality of the set
P(Uz) has been observed by DDL03. We are able to improve theirtregiving a
shorter proof.

THEOREM 6 If |P(Uz)| < 2¢~¢, we can terminate the current branch of the combine-
method in<U> without violating its correctness.

Proof: Let W7 be a witness anti; C W its subwitness. Now, there exist exactly
(e — d) linearly independent vectomsy, ... ,w.—q €e<W> with wy, ... ,W.—g ¢<
U> and consequentiyiy, ... ,w.—q €<U>. These vectors exist due to dimension
reasons as difi; = e and dinlz = d. Therefore, for any subwitnegg; C W5 exist
2¢~4 parallel subwitnesses. This implies th&(U5)| > 2¢~<. As a consequence, we
can stop at any step in the algorithm if this condition is aietl because we will not
be able to extend the flat; to a witness of dimensioa O

4. The Improved Algorithm

Using the ideas from the previous section, we obtain theréfgo of Fig. 3. The
method SearchForParallelFlats can be found in Fig. 4 an@ptienised version of
the combine-method is presented in Fig. 5. In the followiagtions, we analyse this
optimised algorithm.

4.1 Complexity Analysis

We start the analysis of the algorithm with determining tbheberr of repetitions.
Then we analyse the complexity of the main loop from Fig. 8 ¢bmplexity of the
SearchForParallelFlats from Fig. 4 and the complexity ef@ombine-procedure from
Fig. 5 in different steps.
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Figure 3. Main loop for the optimised algorithm

Input:  functionf, start dimension, end dimensiom, repetitions-
Output: one witness if the function ésnormal
for i« 1tordo
So —{} 51— {}
fori«— 1to2s+1do
perFy
)
ScU — {p}
endfor
if ((|So| # s+ 1)and(|S1| # s + 1)) then continue
c— |S1|—s
if f| 5,0<p.@p,..... Bo@p.> (Pi € Se,i€{0,...,s})not constanthen continue
a® <U> «— ComputePGBqy, . .. ,Ps)
if dim<U> # s then continue
SearchForParallelFlats(>)
endfor

Figure 4. SearchForParallelFlats for the optimised algorithm

procedure SearchForParallelFlats{/> )
<U> «— ComputeComplement{U> )
L—0,c f(@
for b € <U> \{a@} do
if fiu, = c then Append(_,b)
if |L] > 2°~* then CombineU> ,L)
endproc

Number of Repetitions.
For determining the number of repetitions, we need thevioiig lemma from MWS91,
concerning the number of subspaces and flats of a certaimdiorein a vector space.

LEMMA 7 The number of subspaces of dimensian a vector space of dimension
n is given by

s—1 2n—i -1

=0
The number of flats of dimensienn a vector space of dimensiaenis given by

s—1

NF(n,s):=2""° H

=0

2n—i 1

Before determining a bound onwe first introduce the term complaisant flat.
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Figure 5. Combine-method for the optimised algorithm

Global Initialisation:
forall @ € Fy do
L% — 0

procedure CombinekU>, L)
d «— dim <U>
if d > ethen
Leta € L
OUTPUT Uz
endif
forall (b;,b;) € Lx L:i < jdo
Append (" ®"7, b;)
forall (b;,b;) € Lx L:i < jdo
a<— b ®b;
if [L%| > 2¢~9~1 then
L 0
forall b € L% do
if b € <U,a> then Append(.’, b) elseAppend(/, a & b)
CombinekU,a>, L)
endif
L% — 0
endfor
endproc

DEFINITION 8 A flatU; is calledcomplaisantf the function is constant on the flat,
the flat is parallel to a sub-witness, but the flat is not comead in any witness.

THEOREM 9 When choosings + 1) pointsp,, ... ,p, € Fy at random, the prob-
ability PF'(n, s, e) that the flatUz formed by thesés + 1) points pass the first step in
the algorithm is equal to

PF(n,s,e) = Pr(Uzisasub-withegs+ Pr(Uz is a complaisant flat,
where
Pr(Ug is a sub-witnegs := 2¢7" f[ -2
a - J on
i=1
. , _gs 2" ¢NS(n,s) — NF(e,s)
Pr(Us is a complaisant flat = 272 1. ’ A
r( P 3 NS(n,s)

In the above formulg; is the dimension of the witness. The formulas¥d#(-, -) and
NF(.,-)aregivenin Lemma 7.
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Proof: We first determine the probability that the fl&} is a sub-witness. This
probability is justified with an inductive argument on thendinsion of the sub-witness:
for one point {.e., a flat of dimension 0), the probability of being a sub—wimtssgé.
Here, the witness ha® points. This probability is also true for extending the sub-
witness from dimensiof: — 1) to dimension (we havel < ¢ < s). In addition, we
have to consider the cage € py+ <py,-..,D;_1>, I.€, the new poing, lies in the
sub-witness of dimensiofi — 1) generated by the point, ... ,p;_;-

The probability thatl; is a complaisant flat is equal to the probability that the
function is constant oz times the number of flats which are parallel with a withess
but not part of a witness. This is exactly expressed in thedia. O

>From the previous theorem and the implicit evaluationtsga as described in
Sect. 3.2, we can deduce the following corollary.

COROLLARY 10 For a given start dimensionand an end dimension we need at
most

c 1
PF(n,s,e) Pr(onlyl flat)#flats

Rep(n, s,e,c) =

repetitions to achieve a confidence2of® that the functionf is note-normal.

Table 2 shows some numerical valuesrdh log,. In this and all following tables,
we concentrate on even choices foand fixe = 7 as these cases are particularly
relevant in cryptography.

Table 2. Number of repetitions (itog,) for different values of, ands
[s\n]| 8 [ 10 | 12 [ 14 [ 16 [ 18 [ 20 |
2 15.49 | 18.35| 21.28 | 24.25| 27.23 | 30.22 | 33.22

3 18.68 | 22.31| 26.14 | 30.06 | 34.02 | 38.00 | 41.99
4 26.11| 30.72| 35.54 | 40.45| 45.40 | 50.38

Complexity of the main loop.

Obviously, picking(2s + 1) random points and checking if the function is constant for
a given flat, will be the most expensive operations. Theegfawe start with a lemma
on the average complexity for checking that a function isstamt on a given set of
points.

LEMMA 11 For a given random functiorf : FZ — F, and a given set of points
P C %, the algorithm from Fig. 6 needs on average 3 evaluationstofcheck if this
function is constant when restricted to vectors in the/3et

Proof: The average number of evaluations depends on the numbeint$ po= | P
of this algorithm; it is given by

Pl 1 1

i=1
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Figure 6. Algorithm to determine if a function is constant on a set of points

Input:  functionf, a setP with p := | P| points
Output: 1iff is constant or? and 0 otherwise
Letq, € P,c— f(q,)
forge P\ {g,} do

if f(q) # cthenOUTPUT 0
OUTPUT 1

To justify this formula, we observe that we need to evalyate least once to obtain
the constant. As the function is a random function by definition, we haver@bp-
bility of % to obtain a different constant for every further evaluatios, to terminate
this algorithm. After checking a total gf points, the algorithm terminates. For this
last check, we still have a probability (%f to output 0. However, the workload of
outputting 0 or 1 is exactly the same, namglgvaluations. ]

As a consequence, the complexity of the main loop so far digpen the costs of
picking the(2s + 1) random points, evaluating the functighon the corresponding
flat with probability Pr(Only one flat)and some other negligible operations whose
complexity we set to ond,e., (2s + 1+3Pr(Only one flat}1)r, wherer represents
the number of repetitions. We obtain the following valuks{) if we evaluate the
above formula numerically (cf Table 3).

Table 3. Numerical results for the time-complexity (iag,) of the main loop
| n || s=2 | s=3 | s:4| s=25 |

8 18.47 21.95
10 21.33 25.58 29.63
12 24.26 29.41 34.24 39.12
14 || 27.23 | 33.33 | 39.06 | 44.72
16 30.21 37.29 43.97 50.53
18 33.20 41.27 48.93 56.44
20 || 36.20 | 45.26 | 53.90 | 62.40

Complexity of the SearchForParallelFlats-method.

From a computational point of view, the for-loop is very empige, as we have to
check2”~* — 1 parallel flats every time. However, each flat costs only 3aipens on
average (cf Lemma 11). In addition, we only need this foplov2—2"*! of all cases
as this is the probability that the function is constant am ¢brresponding flat. The
other steps in the method are negligible in comparison tdahoop. We therefore
identify their average workload as 1. Consequently, thepierity can be approxi-
mated by(1+3-(2-2 T1Pr(only one flat)2"—2"—**1)r for the SearchForParallelFlats-
method, where denotes the number of repetitions. Numerical values fotithe-
complexity (inlog,) of the SearchForParallelFlats-method are presentediie #a
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Table 4. Numerical results for the time-complexity (log,) of the SearchForParallelFlats-
method

| n||s=2|s=3|s:4|s=5|

8 19.50 | 19.18
10 || 24.28 | 23.71 | 26.11
12 || 29.20 | 29.06 | 30.73 | 35.38
14 || 34.16 | 34.83 | 35.60 | 40.98
16 || 39.14 | 40.75 | 40.69 | 46.79
18 || 44.13 | 46.72 | 46.20 | 52.70
20 || 49.13 | 52.71 | 52.37 | 58.66

Complexity of the Combine-procedure.

The complexity analysis of the combine-procedure is &litibre tricky. In particular,
we have to deal with the problem that its complexity depenaideptically on the
number of parallel flats we finde., the numbe{P(Uz)| for a given flat/z. Therefore,
we cannot simply take the average number of flats for thisyaigahs the result does
not reflect the real time complexity of this algorithm. In &gtoh, we have to deal with
the branching condition (cf Sect. 3.4).

As we did not expect to find a closed formula for the time comipfeof the
combine-procedure, we used MAG to compute it numericallg. al computations
are done with rational numbers, there are no rounding eimdvsAGMA. In particu-
lar, we computed the probability for the different numbefrparallel flats we obtain
in the searchForParallelFlats-method. We only took nusiberc~* into account
(cf Thm. 6) and neglected levels of recursion which appedtr teio small probability
(< 2749), due to the branching condition. In addition, we truncateglsum at points
which did not contribute to the overall workload anymorep@sted workload smaller
than 1). We present the corresponding valles,j for different choices ofi ands in
Table 5.

Table 5. Numerical results for the time-complexity (iog,) of the Combine-method
‘ nH s§s=2 | s=3 | 524‘ s=5 ‘

8 24.17 | 15.97
10 31.15 | 22.87 ~ 0
12 38.03 | 15.76 ~0 ~0
14 4497 | 23.68 ~0 ~0

16 51.93 | 35.02 ~0 ~0
18 43.34 ~0 ~0
20 51.33 ~0 ~0

These computations were matched by our empirical resultspatticular, the
branching condition proved to be very powerful for> 3 andn > 12 (note dif-
ference between = 10 andn = 12 for s = 3). In these cases, we never needed
a recursive call of the combine-method for non-normal fiomst. In addition, the
probability for a function to be constant on a given flat dasgs exponentially with
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increasing dimension of the flat. Therefore, we expect toléisd thar2¢—* flats for
s > 4 andn < 20 which means that the combine-method is never invoked irethes
cases (fields with= 0 in the above table).

All in all, it is necessary to chose the starting dimensionorrectly, i.e., high
enough such that the combine-method is still efficient amcHoough such that Search-
ForParallelFlats and the main loop do not need too much tifaedimensiom > 10,
the choices = 3 turns out to be optimal (cf Fig. 7 for the case= 16).

Figure 7. Time-complexity for the main loope, SearchForParallelFlats<)( and the
combine-methodx) for dimensionn = 16 and varyings

time
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*
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+£ *
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X
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Asymptotic Analysis.

Here we sketch the asymptotical analysis of the above @hgoriwe begin with the
observation that for large and subsequently large the running time will only de-
pend on the number of repetitions necessary. We justifyré@soning as follows: as
we saw for the combine-method, we have a very powerful biiagotondition,i.e.,
asymptotically, this part will not contribute to the ovéi@mplexity. The same is true
for the search of parallel flats: we have a complexity)g(—2"+1)("=9)) here,i.e,,
negligible forn — oo. In addition, we cannot use the implicit evaluation strgteg
anymore in the asymptotic case, as we obtain a rather snwdbpility for having
exactly one flas — oco. Therefore, we drop the corresponding term in our asymptoti
analysis. For our analysis, we chose- %n ande = %n and obtain the following
asymptotically upper bound on the number of repetitionsthod the running time of
the algorithm:

Rep(n, in, %n, c) = O(c‘2§"2+%”) ,
wherec is the target confidence level. To obtain this upper boundpbserve that
the probability to have a complaisant flat is asymptoticalyy small. In addition,
we notice that for large: the factor2¢—"+s(¢=1-7) is a tight lower bound on the
probability PF'(n, s, ¢). Using Theorem 9 and Corollary 10 yields the result.
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4.2 Comparison with the Algorithm from Daum et al.

In Fig. 8 and Table 6 we compare the time complexities of ogo@thm with that
of DDLO3, for computing the normality of a function in diméos n. We are not
aware of an asymptotical analysis of the algorithm from DBLO

Figure 8. Time-complexity (inlog,) of this paper£) and from DDLO3 ¢)

time
(log,,) .
60 + °
° *
*
40 1 ° *
*
14 16 18 20

The time complexity of algorithm of DDLO03, is computed usithg formulas given
there. According to these results, we expect that it is atdp@aed by our algorithm
for increasing dimension.

Table 6. Comparison of the time-complexity (ibg,)

n s Daumet al. | Our alg. n S Daumet al. | Our alg.

14| 2 42.58 44.97 18| 2 61.17 > 50
3 ~ 46 35.27 3 61.01 46.72
4 ~ 52 39.18 4 > 61 49.13

16 | 2 51.58 51.93 20| 2 71.09 > 55
3 =~ 54 40.88 3 71.04 > 55
4 ~ 62 4411 4 >71 54.33

4.3 Empirical Results

We have implemented our algorithm in a programme with 14088 of C++
code. Checking random functions on an AMD Athlon XP 2000+, okt¢ained the
following results fore = 5 (normality) ands = 3:

n 10 12 14 16
time [min] | 0.248 | 1.21 | 42.6 | 2880

As we see in this table, the running time gets quickly out afcha According
to DDLO3, their programme needs approximately 50 h on a BentV 1.5 GHz
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for the casen = 14. Our algorithm needs approximately 43 min for= 14 and
approximately 2 d fon = 16. Using the complexity analysis of DDL03, we expect a
running time of more than a year for their algorithm to harfdiections of dimension
n = 16. We also estimated (empirically) the running time for theesa = 18,20
and obtain 2.5 years and 130 years, respectively.

For our C++ implementation, we have included several impnoents:

Combinatorial Gray codes. In order to compute vectors more efficiently for a
given basis, we used combinatorial Gray codes (Sav97) anguied all intermediate
values in a Gray code like fashion. This way, we only needesl @mputation on
average rather thafy when computing elements of the vector space>.

Optimised Pseudo-Random Number Generator. As the programme spends
approx. 60% of its time computing random numbers, we coreduthat it could
benefit from a fast way of generating pseudo-random numbésacever, due to the
high number of repetitions, we still need a long period fa& pseudo-random number
generator. To meet both aims, we used a pseudo-random ngeherator from Rho
which combines a multiply with carry generator and a simplétiplicative generator.

It achieves a period of more thaf°, has good statistical properties, and is also very
fast according to our measurements. For the future, teskstiaé cryptographically
secure pseudo-random number generator using Shamirisciidas class (KS04) are
planned.

Function storage. For the Boolean function to be checked, we can use several
ways of storing it: bit-wise, byte-wise or in processor-d®i(32 bit). To make the
best use of the internal cache of the processor, a bit-wisag turned out to have
the best performance for dimensioms> 12. For dimensions: < 10, an word-wise
storage was clearly better as we do not have the overheattief/neg single bits from

a word.

5. Conclusions

In this paper, we present a fast asymmetric Monte Carlo éfgorto determine the
normality of Boolean functions. It uses the fact that a figrctvhich is constant on a
flat of a certain dimension is also constant on all sub-flatewér dimension. In ad-
dition, we evaluate “parallel” flats using the implicit evation strategy (cf Sect. 3.2).
Starting with flats of dimensios and combining them until a flat of dimensieris
obtained, we achieve a far lower time-complexity than withastive search on flats
of dimensiore.

In particular, this algorithm is far faster than the prexlyuknown algorithm (43
min in comparison to 50 h) for dimension 14 (cf 4.2). Moreovds the first time that
the important case = 16 can be computed on non-specialised hardware in 2 days
(previously: more than a year). Using the fact that our algor can be parallelised
easily, this figure can even be improved and we can even hémellease: = 18 (16
computers in 8 weeks). For scientific purposes and at preseat( seems to be out
of reach as it would take 128 computers about 1 yeatr.
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