FROM PETRI NETS TO POLYNOMIALS: MODELING, ALGORITHMS, AND COMPLEXITY

Ernst W. Mayr Fakultät für Informatik TU München _http://www.in.tum.de/~mayr/_

OUTLINE OF TALK

- × some basics of polynomial ideals
- × Petri nets and binomial ideals, and
- complexity theoretic consequences of this relationship
- × Gröbner bases and their complexity
- modeling power of polynomial ideals
- x recent trends and results

OUTLINE OF TALK

- × some basics of polynomial ideals
- × Petri nets and binomial ideals, and
- complexity theoretic consequences of this relationship
- × Gröbner bases and their complexity
- x modeling power of polynomial ideals
- x recent trends and results

Polynomial Ideals

Given: A finite set of polynomials

$$p_1,\ldots,p_h\in\mathbb{Q}[x_1,\ldots,x_n]$$

and a test polynomial p. The ideal

 $\langle p_1,\ldots,p_h\rangle$

generated by the p_i is the set of all polynomials q which can be written

$$q = \sum_{i=1}^{h} g_i p_i$$

with polynomials $g_i \in \mathbb{Q}[x_1, \ldots, x_n]$.

Examples

• The ideal generated in $\mathbb{Q}[x, y]$ by the two polynomials

$$p_1 = x^2$$
 and $p_2 = y$

is the set of all those polynomials all of whose monomials are divisible by x^2 or y.

Examples

• The ideal generated in $\mathbb{Q}[x, y]$ by the two polynomials

$$p_1=x^2$$
 and $p_2=y$

is the set of all those polynomials all of whose monomials are divisible by x^2 or y.

• We have:

$$y^{2} - xz = (y + x^{2})(y - x^{2}) - x(z - x^{3})$$
$$= (y + x^{2}) \cdot p_{1} - x \cdot p_{2}$$
$$\in \langle p_{1}, p_{2} \rangle$$

Thus

$$y^2 - xz \in \langle y - x^2, z - x^3 \rangle$$
.

We consider the ideal in \mathbb{R}^3 generated by the polynomials

$$p_1$$
: $z^2 - 8z - \frac{13}{10x + y^2 + 16}$,
 p_2 : $z - 2x^4 - 4y^2x^2 + 4x^2 - 2y^4 + 4y^2 - 5$, and
 p_3 : $z - x - 3$.

The Zeroes of p_1 , p_2 , and p_3

Algebraic Varieties

Definition: The common zeroes $\in \mathbb{C}^n$ of a (finite) set of polynomials $\in \mathbb{C}[x_1, \ldots, x_n]$ is called an (algebraic) variety.

Algebraic Varieties

Definition: The common zeroes $\in \mathbb{C}^n$ of a (finite) set of polynomials $\in \mathbb{C}[x_1, \dots, x_n]$ is called an (algebraic) variety. **Definition:** The radical $\sqrt{\mathcal{I}}$ of an ideal $\mathcal{I} \subseteq \mathcal{K}[\mathbf{x}]$ is the ideal $\{p \in K[\mathbf{x}]; \ p^k \in \mathcal{I} \text{ for some } k \in \mathbb{N}\}$.

Algebraic Varieties

Definition: The common zeroes $\in \mathbb{C}^n$ of a (finite) set of polynomials $\in \mathbb{C}[x_1, \dots, x_n]$ is called an (algebraic) variety. **Definition:** The radical $\sqrt{\mathcal{I}}$ of an ideal $\mathcal{I} \subseteq \mathcal{K}[\mathbf{x}]$ is the ideal $\{p \in K[\mathbf{x}]; \ p^k \in \mathcal{I} \text{ for some } k \in \mathbb{N}\}$.

Let *K* be some algebraically closed field. Then, by the strong version of Hilbert's Nullstellensatz, there is a one-to-one correspondence between the radical ideals in $K[x_1, \ldots, x_n]$ and the algebraic varieties in \mathbb{C}^n .

Polynomial Ideal Membership Problem

Let polynomials $p, p_1, \ldots, p_w \in \mathbb{Q}[x_1, \ldots, x_n]$ be given.

Decision problem:

$$\mathbf{Is} \ p \in \langle p_1, \dots, p_w \rangle$$
?

Polynomial Ideal Membership Problem

Let polynomials $p, p_1, \ldots, p_w \in \mathbb{Q}[x_1, \ldots, x_n]$ be given.

Decision problem:

$$\left(\mathsf{Is} \ p \in \langle p_1, \dots, p_w \rangle ? \right)$$

Representation problem:

Determine
$$g_i \in \mathbb{Q}[x_1, \dots, x_n]$$
 such that $p = \sum_{i=1}^w g_i p_i$.

OUTLINE OF TALK

- × some basics of polynomial ideals
- Petri nets and binomial ideals
- * complexity theoretic consequences of this relationship
- × Gröbner bases and their complexity
- x modeling power of polynomial ideals
- x recent trends and results

BINOMIAL IDEALS

- Binomial polynomials are polynomials which are the difference of two monomials
- Binomial ideals are ideals generated by binomial polynomials
- Binomials can be thought of as specifying (symmetric, i.e., Thue) commutative replacement systems
- Every polynomial can be represented by (a system of) trinomials

Petri Nets and VAS

Petri Nets and VAS

marking: number of tokens on places firing of transition: marking change reachability set: set of reachable markings Reversible PNs correspond to systems of binomials: Symbols: s_1, s_2, s_3

congruences:

binomials:

$$s_1 \Leftrightarrow s_2 s_3 \qquad p_1 = s_2 s_3 - s_1$$
$$s_2 \Leftrightarrow s_2 s_3 \qquad p_2 = s_2 s_3 - s_2$$
$$s_2 s_3^2 \Leftrightarrow s_1 \qquad p_3 = s_1 - s_2 s_3^2$$

SOME FACTS ABOUT PETRI NETS

- x invented by Carl Adam Petri in 1962
- x greatly advanced by the MIT Project MAC
- x numerous applications and uses, like
 - + modeling program synchronization
 - + modeling a Berlin beer brewery
 - + modeling the Murmansk economic region
 - + modeling enzyme action and metabolism of cells
- × also see

http://www.informatik.uni-hamburg.de/TGI/pnbib/

OUTLINE OF TALK

- × some basics of polynomial ideals
- Petri nets and binomial ideals
- * complexity theoretic consequences of this relationship
- × Gröbner bases and their complexity
- x modeling power of polynomial ideals
- x recent trends and results

SOME FACTS ABOUT PETRI-NET COMPLEXITY

- The reachability problem for PNs is decidable: M [1980]
- simple generalizations of the model make the reachability problem undecidable
- The containment and equivalence problems for PNs are undecidable: Hack [1976]
- * These problems are non-primitive recursive even for finite reachability sets: M [1981]

SOME RESULTS

× upper bounds for PIMP:

- + decidability: G. Hermann [1926]
- + doubly exponential degree bound with coefficients in Q: Hermann [1926]
- + exponential degree bound for special p : Brownawell[1987], Heintz et al. [1988], Berenstein/Yger [1988]
- exponential space upper bound with coefficients in Q, polynomial for special p : M [1988]
- x upper bound for PN reachability:
 - + decidability: M [1980]
 - + exponential space for reversible PN: M/Meyer [1982]

SOME MORE RESULTS

× lower bounds for PIMP:

- + doubly exponential degree lower bound in pure difference binomial ideals: M/Meyer [1982]
- + exponential space lower bound: M/Meyer [1982]
- Iower bounds for PN reachability:
 - + exponential space lower bound for general PN: Lipton [1974]
 - + Exponential space lower bound for reversible PN: M/Meyer [1982]

FURTHER RESULTS FOR POLYNOMIAL IDEAL MEMBERSHIP

× PIMP is in PSPACE for:

- + homogeneous ideals (and complete): M [1988]
- + ideals of constant dimension: Berenstein/Yger [1990]
- + special cases, like *p* = 1: Brownawell [1987]
- The PI triviality problem is in the second level of the polynomial hierarchy: Koiran [1996]

OUTLINE OF TALK

- some basics of polynomial ideals
- × Petri nets and binomial ideals
- x complexity theoretic consequences of this relationship
- **×** Gröbner bases and their complexity
- x modeling power of polynomial ideals
- recent trends and results

Admissible term ordering:

(i)
$$x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$$

Admissible term ordering:

(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$ (ii) Let m, m_1, m_2 be terms with $m_1 \prec m_2$. Then

 $mm_1 \prec mm_2$.

Admissible term ordering:

(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$ (ii) Let m, m_1, m_2 be terms with $m_1 \prec m_2$. Then

 $mm_1 \prec mm_2$.

Examples:

Admissible term ordering:

(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$ (ii) Let m, m_1, m_2 be terms with $m_1 \prec m_2$. Then

 $mm_1 \prec mm_2$.

Examples:

1. lex: $x_1^2 \succ x_1 x_2^3 x_3^{1023}$

Admissible term ordering:

(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$ (ii) Let m, m_1, m_2 be terms with $m_1 \prec m_2$. Then

 $mm_1 \prec mm_2$.

Examples:

1. lex: $x_1^2 \succ x_1 x_2^3 x_3^{1023}$ 2. grevlex: $x_2^3 \succ x_1$ and $x_1 x_2 x_3 \succ x_1 x_3^2$

Admissible term ordering:

(i) $x_{\pi(1)} \succ x_{\pi(2)} \succ \ldots \succ x_{\pi(n)} \succ 1$ (ii) Let m, m_1, m_2 be terms with $m_1 \prec m_2$. Then

 $mm_1 \prec mm_2$.

Examples:

- **1. lex:** $x_1^2 \succ x_1 x_2^3 x_3^{1023}$
- **2. grevlex:** $x_2^3 \succ x_1$ and $x_1x_2x_3 \succ x_1x_3^2$

Arrange the monomials in polynomials according to \prec in decreasing order.

Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if the leading term lt(g) divides one of the momomials m of f. The reduct is

$$\tilde{f} = f - \frac{m}{lt(g)} \cdot g$$
.

Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if the leading term lt(g) divides one of the momomials m of f. The reduct is

$$\tilde{f} = f - \frac{m}{lt(g)} \cdot g$$
.

2. A polynomial f is reducible by a set G of polynomials if there is a sequence $g = g^{(0)}, g^{(1)}, \ldots, g^{(r)}, r \ge 1$, such that each $g^{(i)}$ is the reduct of $g^{(i-1)}$ by one of the polynomials in G.

Polynomial Reduction

Definition:

1. A polynomial f is reducible by some other polynomial g if the leading term lt(g) divides one of the momomials m of f. The reduct is

$$\tilde{f} = f - \frac{m}{lt(g)} \cdot g$$
.

- 2. A polynomial f is reducible by a set G of polynomials if there is a sequence $g = g^{(0)}, g^{(1)}, \ldots, g^{(r)}, r \ge 1$, such that each $g^{(i)}$ is the reduct of $g^{(i-1)}$ by one of the polynomials in G.
- 3. A polynomial f is in normal form wrt a set G of polynomials if it cannot be reduced by G.

Definition:

Let *I* be an ideal in $\mathbb{Q}[x] = \mathbb{Q}[x_1, \dots, x_n]$ and \prec an admissible term ordering. A set $G = \{g_1, \dots, g_r\}$ of polynomials in *I* is called a Gröbner basis of *I* (wrt \prec) if for all $f \in \mathbb{Q}[x]$ the normal form of *f* wrt *G* is uniquely determined.

Definition:

Let *I* be an ideal in $\mathbb{Q}[x] = \mathbb{Q}[x_1, \dots, x_n]$ and \prec an admissible term ordering. A set $G = \{g_1, \dots, g_r\}$ of polynomials in *I* is called a Gröbner basis of *I* (wrt \prec) if for all $f \in \mathbb{Q}[x]$ the normal form of *f* wrt *G* is uniquely determined.

Remark:

Thus, in particular, the normal form does not depend on the order of the reductions by the $g \in G$.

- exponential space algorithm for the computation of Gröbner bases: Kühnle/M [1996],
- exponential space bounds also result for a number of ideal operations, like intersection, union, quotient, etc.
- PSPACE algorithms for those cases where exponential degree bounds hold,
- the bounds also hold for characteristic $\neq 0$ (but infinite fields).

OUTLINE OF TALK

- x some basics of polynomial ideals
- × Petri nets and binomial ideals
- complexity theoretic consequences of this relationship
- **×** Gröbner bases and their complexity
- modeling power of polynomial ideals
- recent trends and results

Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is: Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

Propositional Derivation/Proof Systems

One of the most fundamental questions in logic is: Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

What is a standard proof system?

One of the most fundamental questions in logic is: Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

What is a standard proof system?

One example is resolution calculus, with just one derivation rule (resolution for a variable x):

$$\frac{x \lor A, \ \neg x \lor B}{A \lor B}.$$

One of the most fundamental questions in logic is: Given a (propositional) tautology, what is a shortest proof for it (in a standard proof system)?

What is a standard proof system?

One example is resolution calculus, with just one derivation rule (resolution for a variable x):

$$\frac{x \lor A, \neg x \lor B}{A \lor B}$$

The goal is to derive the contradiction consisting of the empty clause (resolution of clauses x and $\neg x$).

Translation to Polynomial Ideals

- $\phi(x) = 1 x$,
- $\phi(\neg x) = 1 \phi(x)$,
- $\blacktriangleright \phi(x \lor y) = \phi(x)\phi(y),$
- and with DeMorgan:

$$\phi(x \wedge y) = \phi(\neg(\neg x \vee \neg y)) = \phi(x) + \phi(y) - \phi(x)\phi(y)$$

Translation to Polynomial Ideals

- $\phi(x) = 1 x$,
- $\phi(\neg x) = 1 \phi(x)$,
- $\phi(x \lor y) = \phi(x)\phi(y)$,
- and with DeMorgan:

$$\phi(x \wedge y) = \phi(\neg(\neg x \vee \neg y)) = \phi(x) + \phi(y) - \phi(x)\phi(y)$$

Question: Does the ideal generated by these polynomials contain false, i.e., the constant polynomial 1?

We consider polynomial rings in several variables over GF(2), including the Fermat polynomials $x_i^2 - x_i = 0$.

Theorem: Let polynomials $p, p_1, \ldots, p_w \in GF(2)[x_1, \ldots, x_n]$ be given. The word problem

Is
$$p \in \langle p_1, \ldots, p_w \rangle$$
?

is co-NP-complete.

We consider polynomial rings in several variables over GF(2), including the Fermat polynomials $x_i^2 - x_i = 0$.

Theorem: Let polynomials $p, p_1, \ldots, p_w \in GF(2)[x_1, \ldots, x_n]$ be given. The word problem

Is
$$p \in \langle p_1, \ldots, p_w \rangle$$
?

is co-NP-complete.

Theorem: The radical word problem

Is
$$p \in \sqrt{\langle p_1, \ldots, p_w \rangle}$$
?

is co-NP-complete.

Properties of Algebraic Derivation Systems

Theorem: For each ring R, Frege proofs (and extended Frege proofs) can be simulated efficiently by algebraic derivations of polynomial length.

Properties of Algebraic Derivation Systems

Theorem: For each ring R, Frege proofs (and extended Frege proofs) can be simulated efficiently by algebraic derivations of polynomial length.

Observation: There exist examples, for which algebraic derivation systems (or Gröbner proof systems) are considerably more efficient (asymptotically) than resolution.

FURTHER APPLICATIONS

- × Geometric design
- Computation of the possible movements of robots or multi-joint robot arms
- Modeling of the electrical behavior of integrated circuits
- Modeling of carbon rings and their degrees of freedom in chemistry

... CONT'D

- Application of involutive Gröbner bases for the solution of partial differential equations in nuclear physics
- × Combinatorial optimization
- Coding theory
- × Modeling of combinatorial graph properties

SOME OPEN PROBLEMS

- translate new degree bounds (for polynomials over rings not fields) into space efficient algorithms
- develop and analyze algorithms for ideal operations
- x complexity of radical ideals
- complexity of toric ideals

August 20, 2010

THE END! Thank you for your attention!