Approximations-Schemata, Estimator-Theorem, Expansion des Universums und Uniformes Sampling am Beispiel von # DNF

Sommerakademie 2007

Peter Zaspel

Idee

Ziel:

Approximative Lösung von kombinatorischen Zählproblemen

Lösung:

Verwendung der Methode der *Expansion des Universums* und von *Randomisierung* zur Approximation

- Einleitung
 - Idee
 - Definitionen
 - Komplexität der Aufgabe
- Expansion des Universums
 - Definitionen
 - Zentraler Satz
- 3 Randomisierte Approximationsschemata
 - Definitionen
 - Wahrscheinlichkeitsverstärkung
- Monte-Carlo-Methode
 - Voraussetzungen
 - Monte-Carlo-Algorithmus
 - Estimator-Theorem
- 5 Anwendungsbeispiel: # DNF
- Zusammenfassung

Definition (kombinatorisches Optimierungsproblem Π)

Gegeben durch:

- D: Menge der (zulässigen) Eingaben
- $S(\mathcal{I})$ mit $I \in D$: Menge der zulässigen Lösungen zu Eingabe I
- ullet $f:S(I) o \mathbb{N}^{
 eq 0}$ (Bewertungsfunktion)
- $ziel \in \{min, max\}$

Gesucht:

für $I \in D$ eine Lösung $\sigma_{opt} \in S(I)$ so dass

$$f(\sigma_{opt}) = ziel\{f(\sigma) \mid \sigma \in S(I)\}$$

 $OPT(I) = f(\sigma_{opt})$ ist der Wert einer optimalen Lösung.

Definition (kombinatorisches Zählproblem $\#\Pi$)

Gegeben:

kombinatorisches Optimierungsproblem Π

Gesucht:

#(I) = |S(I)| (Anzahl zulässiger Lösungen zu Probleminstanz I)

Beispiel (Rucksack-Zählproblem #RUCKSACK)

Gegeben: RUCKSACK (Standard-Knappsack-Problem)

Gesucht: Anzahl der Rucksackfüllungen, die maximales Füllgewicht nicht

überschreiten

Beispiel (Färbungen-Zählproblem $\#COL_k$)

Gegeben: COL_k (Graph-Färbbarkeitsproblem mit k Farben)

Gesucht: Anzahl der korrekten Knotenfärbungen mit $\leq k$ Farben

Beispiel (DNF-Zählproblem #DNF)

Gegeben:

Probleminstanz Ψ ist Boolsche (n,m)-Formel in DNF über n Variablen $V = \{x_1, ..., x_n\}$

Also: $\Psi = C_1 \vee ... \vee C_m$ mit C_i Monome der Länge k_i bestehend aus Literalen x_j und \bar{x}_k . (Pro Monom kommt eine Variable maximal einmal vor.)

Gesucht:

Anzahl der zulässigen Belegungen, d.h. Belegung

 $b_{\Psi}:V \rightarrow \{\textit{TRUE},\textit{FALSE}\}$ der Variablen so, dass Ψ erfüllt wird.

Komplexität (1)

Komplexitätsklasse #P

In #P sind die Zählprobleme enthalten, deren zugehörige Entscheidungsprobleme in NP liegen.

Ein Problem p in #P ist #P-vollständig, wenn sich alle Probleme aus #P mittels Polynomialzeitreduktion auf p reduzieren lassen.

Lemma

Wenn P = NP, dann lassen sich #P-vollständige Probleme in Poly-Zeit lösen.

Komplexität (2)

Satz

#DNF ist #P-vollständig.

Vermutung

Expansion des Universums

Idee der Expansion

- Erweiterung der Menge der erlaubten Lösungen S(I) auf eine Obermenge U_I
- ullet Berechnung der Kardinalität von U_I
- Abschätzung des Verhältnisses der Kardinalitäten

Definition (Expansion des Universums)

Gegeben:

- Instanz von #Π
- U_I Menge mit $S(I) \subseteq U_I$ mit $|U_I|$ bekannt U_I ist das *Universum* von S(I)

$$\xi = \frac{|U_I|}{\#(I)} = \frac{|U_I|}{|S(I)|}$$

 ξ ist die Expansion des Universums

Definition der relativen Güte

Gegeben:

- #Π kombinatorisches Zählproblem
- #(I) exakte Lösung
- Approximationsalgorithmus A
- A(I) approximative Lösung des Problems (mit $A(I) \le \#(I)$ und $A(I) \ge \#(I)$ erlaubt)

Definition (Relative Güte ρ_A)

relative Güte der Approximation:

$$\rho_{A}(I) = \max \left\{ \frac{A(I)}{\#(I)}, \frac{\#(I)}{A(I)} \right\}$$

 $\rho_A(n)$ ist relative Güte bei Eingaben der Länge $\leq n$.

Lemma

$$Mit |I| = n gilt$$
:

$$\frac{1}{\rho_A(n)}\#(I) \leq A(I) \leq \rho_A(n)\#(I)$$

Expansion des Universums

$$\xi = \frac{|U_I|}{\#(I)}$$

Satz

Sei s eine obere Schranke für ξ , also: $\xi \leq s$. Dann hat die Approximation

$$A(I) = \frac{|U_I|}{\sqrt{s}}$$

für den Wert #(I) relative Güte von \sqrt{s} .

Approximationsschemata

Gegeben:

- #Π kombinatorisches Zählproblem
- A Algorithmus der $A(I,\epsilon)$ berechnet (unter Eingabe von Instanz I von $\#\Pi$ und von ϵ mit $0<\epsilon<1$

Definition (polynomielles Zähl-Approximationsschema (PASC))

A ist PASC für $\#\Pi$, falls A deterministisch, Laufzeit von A T(A) = O(poly(|I|)) und:

$$|A(I,\epsilon) - \#(I)| \le \epsilon \#(I)$$

Definition (streng polynomielles Zähl-Approximationsschema (FPASC))

A ist PASC und $T(A) = O(poly(|I|, \frac{1}{\epsilon}))$

Definition (polynomielles randomisiertes Zähl-Approximationsschema (PRASC))

A hat Laufzeit T(A) = O(poly(|I|)) und es gilt:

$$Pr[|A(I,\epsilon) - \#(I)| \le \epsilon \cdot \#(I)] \ge \frac{3}{4}$$

Definition (*streng* polynomielles randomisiertes Zähl-Approximationsschema (FPRASC))

A ist PRASC und hat Laufzeit $T(A) = O(poly(|I|, \frac{1}{2}))$

Definition $((\epsilon, \delta)$ -FPRASC)

A ist ein FPRASC mit zusätzlicher Eingabe δ mit $0 < \delta < 1$, hat Laufzeit $T(A) = O(poly(|I|, \frac{1}{\epsilon}, \log(\frac{1}{\delta})))$ und erzeugt eine Ausgabe $A(I, \epsilon, \delta)$ mit:

$$Pr[|A(I,\epsilon,\delta) - \#(I)| \le \epsilon \cdot \#(I)] \ge 1 - \delta$$

Wahrscheinlichkeitsverstärkung

Es ist möglich, aus einem FPRASC ein (ϵ, δ) -FPRASC zu machen. Dies geschieht durch den $\Theta(\log(\frac{1}{\delta}))$ -maligen Aufruf vom FPRASC-Algorithmus:

Algorithmus AMPL $(A; \epsilon, \delta, I)$

for
$$\tau := 1$$
 to T_{δ} do $N_{\tau} := A(I, \epsilon);$ return $\frac{1}{T_{\delta}} \cdot \sum_{\tau=1}^{T_{\delta}} N_{\tau}$

Algorithmus AMPL(A; ϵ , δ , I)

for
$$\tau := 1$$
 to T_{δ} do $N_{\tau} := A(I, \epsilon);$ return $\frac{1}{T_{\delta}} \cdot \sum_{\tau=1}^{T_{\delta}} N_{\tau}$

Satz (Wahrscheinlichkeitsverstärkung)

Gegeben:

- #∏ kombinatorisches Zählproblem
- A ein FPRASC für #Π
- $\delta < 1$ Mit $T_{\delta} = 8\lceil \ln(\frac{1}{\delta}) \rceil$ ist AMPL(A; ϵ, δ, I) ein (ϵ, δ) -FPRASC für $\#\Pi$.

(ロ) (型) (重) (重) (重) のQ(で)

Monte-Carlo-Methode - Voraussetzungen

Gegeben:

- #Π kombinatorisches Zählproblem
- U_I Universum zu jeder Instanz I mit bekanntem $|U_I|$ (Nenne hier U_l Stichprobenraum.)
- $\xi = \frac{|U_I|}{\#(I)}$ Expansion des Universums
- T Anzahl an Wiederholungen im Monte-Carlo-Algorithmus
- $\chi: U_I \to \{0,1\}$ charakteristische Funktion von S(I), mit:

$$\chi(u) = \begin{cases} 1 & \text{falls } u \in S(I) \\ 0 & \text{sonst.} \end{cases}$$

Forderungen

• Es gibt einen Algorithmus UG der mit Laufzeit O(Poly(|I|)) Elemente (Stichproben) u aus U_I ausgibt, so dass für alle $u \in U_I$ gilt:

$$Pr[u \ wird \ von \ UG \ ausgegeben] = \frac{1}{|U_I|}$$

Dieser Algorithmus heißt Stichprobengenerator.

2 Es gibt einen Algorithmus BEANTWORTER, der χ in Zeit O(Poly(|I|)) berechnet.

Monte-Carlo-Algorithmus MC(T)

- for i := 1 to T do
 - (1) ziehe eine Stichprobe $u \in U_I$ mittels UG;
 - (2) $Y_i := \chi(u)$ mittels BEANTWORTER

done;

$$R := \frac{1}{T} \cdot \sum_{i=1}^{T} Y_i;$$

gib $Z := R \cdot |U_I|$ aus.

Lemma

- $E[R] = \xi^{-1}$ $(E[Y_i] = \xi^{-1} \text{ folgt aus Uniformität} \Rightarrow Beh.)$
- ② E[MC(T)] = #(I) $(E[MC(T)] = E[Z] = \xi^{-1} \cdot |U_I| = \#(I))$

Wie groß muss T gewählt werden, damit der Fehler klein wird?

Lemma

•
$$Var[R] = \frac{\xi^{-1} \cdot (1 - \xi^{-1})}{T}$$

2
$$Var[MC(T)] = |U_I|^2 \cdot \frac{\xi^{-1} \cdot (1-\xi^{-1})}{T}$$

Lemma

- $Var[R] = \frac{\xi^{-1} \cdot (1 \xi^{-1})}{T}$
- ② $Var[MC(T)] = |U_I|^2 \cdot \frac{\xi^{-1} \cdot (1-\xi^{-1})}{T}$

Beweis.

 \bigcirc Y_i sind 0-1-Zufallsvariablen

$$\Rightarrow Var[Y_i] = E[Y_i] \cdot (1 - E[Y_i]) = \xi^{-1} \cdot (1 - \xi^{-1})$$

$$\Rightarrow Var[R] = Var \left[\frac{1}{T} \cdot \sum_{i=1}^{T} Y_i \right] = \frac{1}{T^2} \cdot \sum_{i=1}^{T} Var[Y_i] = \frac{\xi^{-1} \cdot (1 - \xi^{-1})}{T}$$

② $Var[MC(T)] = Var[|U_I| \cdot R] = |U_I|^2 \cdot Var[R] = |U_I|^2 \cdot \frac{\xi^{-1} \cdot (1-\xi^{-1})}{T}$

Satz (Estimator-Theorem der Monte-Carlo-Methode)

Gegeben: $\epsilon > 0$, beliebig, aber fest

Mit $T_{\xi}(\epsilon) = \lceil \frac{4}{\epsilon^2} \cdot (\xi - 1) \rceil$ gilt:

$$Pr[|MC(T_{\xi}(\epsilon)) - \#(I)| \leq \epsilon \cdot \#(I)] \geq \frac{3}{4}$$

Beweis.

$$Pr[|MC(T_{\xi}(\epsilon)) - \#(I)| \ge \epsilon \cdot \#(I)]$$

$$\overset{Tschebyscheff}{\leq} \frac{1}{\epsilon^2} \cdot \frac{Var[MC(T_{\xi}(\epsilon)]}{E[MC(T_{\xi}(\epsilon)]^2} \overset{Lemmata}{=} \frac{1}{\epsilon^2} \cdot \frac{|U_I|^2 \cdot \frac{\xi^{-1} \cdot (1 - \xi^{-1})}{T_{\xi}(\epsilon)}}{\#(I)^2}$$

$$\stackrel{Def.\xi}{=} \tfrac{1}{\epsilon^2} \cdot \xi^2 \cdot \tfrac{\xi^{-1} \cdot (1-\xi^{-1})}{T_\xi(\epsilon)} = \tfrac{1}{\epsilon^2} \cdot (\xi-1) \cdot \tfrac{1}{T_\xi(\epsilon)} \stackrel{Def.T_\xi(\epsilon)}{\leq} \tfrac{1}{4}$$

Satz (Estimator-Theorem der Monte-Carlo-Methode)

Gegeben: $\epsilon > 0$, beliebig, aber fest

Mit $T_{\xi}(\epsilon) = \lceil \frac{4}{\epsilon^2} \cdot (\xi - 1) \rceil$ gilt:

$$Pr[|MC(T_{\xi}(\epsilon)) - \#(I)| \leq \epsilon \cdot \#(I)] \geq \frac{3}{4}$$

Bemerkung

- Das Theorem liefert mit $MC(T_{\xi}(\epsilon))$ nicht direkt für jedes Zählproblem, das Universum mit uniformem Generator und Beantworter ein FPRASC.
- Problem: $T_{\xi}(\epsilon)$ linear in ξ \rightarrow Abhängigkeit von dem Wert #(I)
- Deshalb: Abschätzung für ξ nötig.

Anwendungsbeispiel:

DNF

Zutaten

- "vernünftiges" Universum für S(I)
- ullet Abschätzung für ξ
- BEANTWORTER-Algorithmus
- Uniformer Generator f
 ür das Universum
- Monte-Carlo-Algorithmus

Ergebnis

Es gibt ein (ϵ, δ) -FPRASC für #DNF mit der Laufzeit $O(const \cdot n \cdot \frac{1}{\epsilon} \cdot \log(\frac{1}{\delta}))$

Wiederholung

Beispiel (DNF-Zählproblem #DNF)

Gegeben:

Probleminstanz Ψ ist Boolsche (n,m)-Formel in DNF über n Variablen $V = \{x_1, ..., x_n\}$

Also: $\Psi = C_1 \vee ... \vee C_m$ mit C_i Monome der Länge k_i bestehend aus Literalen x_j und \bar{x}_k . (Pro Monom kommt eine Variable maximal einmal vor.)

Gesucht:

Anzahl $\#(\Psi)$ der zulässigen Belegungen, d.h. Belegung $u:V\to \{TRUE,FALSE\}$ der Variablen so, dass Ψ erfüllt wird $(u(\Psi)=TRUE)$.

Wahl des Universums für # DNF (1)

Wichtig

- ullet Erfüllende Belegungen für Ψ einfach bestimmbar, da die Erfüllung einer Klausel ausreicht
- ② Anzahl $\#(C_j)$ der erfüllenden Belegungen einer einzelnen Klausel C_j unmittelbar berechenbar

Zu (1): Wähle erfüllende Belegung für eine Klausel und würfele verbleibende, unbelegte Variablen aus.

Zu (2):

Lemma

Gegeben: $C = I_1 \wedge ... \wedge I_k$ Klausel der Boolschen (n,m)-Formel Ψ in DNF aus k Literalen.

Dann gilt: Es gibt genau 2^{n-k} Belegungen, die C erfüllen.

$$\Rightarrow \#(C) = 2^{n-k}$$
.

20. September 2007

Wahl des Universums für # DNF (2)

Neue Menge mit gleicher Kardinalität wie $S(\Psi)$

$$S(\Psi) = \bigcup_{j=1}^{m} \{u|u \text{ erf \"{u}llt } C_j\}$$

$$= \bigcup_{j=1}^{m} \{u|u \text{ erf \"{u}llt } C_j, \text{ aber kein } C_k, k < j\}$$

$$S'(\Psi) = \bigcup_{j=1}^{m} \{(u,j)|u \text{ erf \"{u}llt } C_j, \text{ aber kein } C_k, k < j\}$$

$$\#(\Psi) = |S(\Psi)| = |S'(\Psi)|$$

Wahl des Universums für # DNF (3)

$$S'(\Psi) = \bigcup_{j=1}^{m} \{(u,j) | u \text{ erf \"{u}llt } C_j, \text{aber kein } C_k, k < j\}$$

Universum

$$U_{\Psi} = \{(u,j)|u \text{ erf } \ddot{u}llt C_j\}$$
$$= \bigcup_{i=1}^{m} \{(u,j)|u \text{ erf } \ddot{u}llt C_j\}$$

Es gilt: $S'(\Psi) \subseteq U_{\Psi}$

$$U_{\Psi} = \bigcup_{j=1}^{m} \{(u,j) | u \text{ erf `ullt } C_j \}$$

mit Lemma folgt:

Kardinalität des Universums

$$|U_{\Psi}|=\sum_{j=1}^m 2^{n-k_j}$$

Abschätzung für ξ

Lemma (Expansionslemma)

$$\xi = \frac{|U_{\Psi}|}{|S'(\Psi)|} \le m$$

(m die Anzahl der Klauseln)

Beweis.

- $U_{\Psi} = \bigcup_{j=1}^{m} \{(u,j) | u \text{ erf \"{u}llt } C_j\}$ enth\"{alt Tupel aus allen erf\"{u}llenden Belegungen u und Werten j mit j=1,...,m
- $oldsymbol{0}$ Anzahl der erfüllenden Belegungen: $|S(\Psi)|$

$$\Rightarrow |\mathsf{U}_{\Psi}| \leq \mathsf{m} \cdot |\mathsf{S}(\Psi)|$$

BEANTWORTER-Algorithmus

Gesucht

Deterministischer Polynom-Zeit-Algorithmus zur charakteristischen Funktion χ von $S'(\Psi)$ mit

$$\chi((u,j)) = \begin{cases} 1 & \text{falls } j = \min\{k|u \text{ erf \"{u}llt } C_k\} \\ 0 & \text{sonst.} \end{cases}$$

Algorithmus

Einfaches Auswerten der DNF nötig

 \Rightarrow deterministisch in Zeit $O(m \cdot n)$ möglich

Uniformer Generator für das Universum (1)

Algorithmus UG

- **1** würfele ein $j \in \{1,...,m\}$ mit Wahrscheinlichkeit $\frac{2^{n-k_j}}{|U_{w}|}$;
- ② setze die in C_j auftauchenden Variablen so, dass C_j wahr wird;
- 3 würfele eine Belegung der restlichen Variablen;
- ullet gib j und die teils berechnete, teils gewürfelte Belegung u aus.

Lemma

Algorithmus UG ist ein uniformer Generator für U_{Ψ} .

Uniformer Generator für das Universum (2)

Lemma

Algorithmus UG ist ein uniformer Generator für U_{Ψ} .

Beweis.

 $Pr[(u,j) \in U_{\Psi} \text{ wird gew\"ahlt}]$ = $Pr[j \in \{1,..,m\} \text{ wird in Zeile 1 ausgew\"urfelt}$ $\land \text{ die } C_j \text{ erf\"ullende Belegung u wird ausgegeben}]$

Mit Wahrscheinlichkeit $\frac{2^{n-k_j}}{|U_{\Psi}|}$ für j und Wahrscheinlichkeit $\frac{1}{2^{n-k_j}}$ für tatsächliche Wahl von u, folgt:

$$Pr[(u,j) \in U_{\Psi} \text{ wird gew\"ahlt}] = \frac{2^{n-k_j}}{|U_{\Psi}|} \cdot \frac{1}{2^{n-k_j}} = \frac{1}{|\mathbf{U}_{\Psi}|}$$

Monte-Carlo-Algorithmus

Wiederholung:

Forderungen

- uniformer Stichprobengenerator f
 ür das Universum
- 2 Algorithmus BEANTWORTER, der χ berechnet

Monte-Carlo-Algorithmus anwendbar

Satz

 $\begin{array}{l} \textit{Mit } T(\epsilon,\delta) = \lceil m \cdot \frac{4}{\epsilon^2} \ln \frac{2}{\delta} \rceil \ \textit{ist Algorithmus MC}(T(\epsilon,\delta)) \ \textit{ein} \ (\epsilon,\delta) - \textit{FPRASC} \\ \textit{für \#DNF } \textit{der Laufzeit } O(m^2 \cdot n \cdot \frac{1}{\epsilon} \cdot \log \frac{1}{\delta}). \end{array}$

Satz

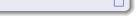
Mit $T(\epsilon, \delta) = \lceil m \cdot \frac{4}{\epsilon^2} \ln \frac{2}{\delta} \rceil$ ist Algorithmus MC($T(\epsilon, \delta)$) ein (ϵ, δ) -FPRASC für #DNF der Laufzeit $O(m^2 \cdot n \cdot \frac{1}{\epsilon} \cdot \log \frac{1}{\delta})$.

Beweis.

- Verwende Monte-Carlo-Algorithmus
- 2 Estimator-Theorem liefert Abschätzung für Fehlerwahrscheinlichkeit

$$Pr[|MC(T_{\xi}(\epsilon)) - \#(I)| \le \epsilon \cdot \#(I)] \ge \frac{3}{4}$$

- Abschätzung für Expansion (Expansionslemma) macht aus dem Monte-Carlo-Algorithmus ein FPRASC
- **4** Anwendung des Satzes über die Wahrscheinlichkeitsverstärkung macht aus FPRASC ein (ϵ, δ) -FPRASC.



Zusammenfassung

Herausforderung

Kombinatorisches Zählproblem approximativ lösen

Methoden

- Expansion des Universums
- Monte-Carlo-Algorithmus
 - Uniformes Sampling
 - BFANTWORTER

Zentrales Ergebnis

Estimator-Theorem

Anwendung

Approximations-Algorithmus für #DNF

Fragen?