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Abstract. Given a list of d-dimensional cuboid items with associated
profits, the orthogonal knapsack problem asks for a packing of a se-
lection with maximal profit into the unit cube. We restrict the items
to hypercube shapes and derive a ( 5

4
+ ε)-approximation for the two-

dimensional case. In a second step we generalize our result to a ( 2d+1
2d

+ε)-
approximation for d-dimensional packing.

1 Introduction

The knapsack problem is one of the most fundamental optimization problems in
computer science. The classical one-dimensional variant and its applications are
subject to a great number of articles, see [1] and [2] for surveys. Not surprisingly,
a geometrical generalization called d-dimensional orthogonal knapsack problem
(OKP-d) is also popular. It is defined as follows.

Given a list I = (r1, . . . , rn) of cuboid items ri = (ai,1, ai,2, . . . , ai,d) with
associated profit pi > 0 and the unit hypercube B = [0, 1]d as a bin. The ob-
jective is to find a feasible, i.e., orthogonal, non-rotational and non-overlapping
packing of a selection I ′ ⊂ I into B such that the overall packed profit is maxi-
mized. An orthogonal packing requires that the items are packed parallel to the
axis of the bin. Items are non-overlapping if their interiors are disjoint. For the
two-dimensional case, i.e., packing rectangles into a unit square, the best-known
general result is a (2 + ε)-approximation given by Jansen and Zhang [3]. As
the difficulty of the problem is increasing drastically with the dimension, only
recently a (7 + ε)-approximation for the three-dimensional case was derived by
Diedrich et al. [4].

In this paper we restrict the items to hypercube shapes (squares instead of
rectangles in the two-dimensional case) and investigate how much easier the
problem becomes. Note that this restriction is quite popular in the literature ([5],
[6], [7]) and yields great potential. Bansal et al. [5] showed for two-dimensional
bin packing, that even though it is APX-complete in the general case, the re-
striction to hypercube bin packing admits an APTAS. Furthermore, their results
hold for higher dimensions as well.
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Our Contribution. Our main result is an approximation algorithm for
square packing, i.e., hypercube OKP-2, with an approximation ratio of ( 5

4 + ε).
Moreover, we show that our result can be extended to d-dimensional packing,
deriving an ( 2d+1

2d
+ ε)-approximation. Note that we improve the known approx-

imations for general two- and three-dimensional knapsack packing significantly.
Furthermore, we reverse the effect of rising approximation ratios for higher di-
mensions. In fact, our approximation ratio is improving exponentially with the
dimension.

Related Problems. Besides the orthogonal knapsack problem, there are two
other common generalizations of packing problems. The previously mentioned
d-dimensional orthogonal bin packing problem (OBPP-d) has the objective of
minimizing the total number of unit-size bins in order to pack a list I of cuboid
items. The d-dimensional orthogonal strip packing problem (OSPP-d), on the
other hand, asks to pack into a strip of bounded basis and unlimited height such
as to minimize the total height of the packing.

In 1990 Leung et al. [8] proved the NP-hardness in the strong sense for
the special case of determining whether a set of squares can be packed into a
bigger square or not. Therefore, already a very special two-dimensional case and
all generalizations are strongly NP-hard. In spite of that, the NP-hardness of
hypercube bin, strip and knapsack packing is still an open problem for d > 2.

OSPP-2 admits an asymptotic full polynomial time approximation scheme
(AFPTAS, see [9]) for the rotational and non-rotational case, see Jansen and van
Stee [10], and Kenyon and Rémila [11]. For OSPP-3, Jansen and Solis-Oba [12]
gave a (2 + ε)-approximation and Epstein and van Stee studied the z-oriented
variant, giving a 2, 25-approximation [13]. For general OBPP-2, the best-known
result is a 1, 691...-approximation by Caprara et al. [14].

Apart from the general knapsack packing results mentioned earlier, OKP-2
has also been studied in different variants. For the restriction to packing squares
into a rectangle in order to maximize the number, Jansen and Zhang gave an
AFPTAS [7]. Maximizing the packed area of squares admits a PTAS, as Fishkin
et al. showed [6]. In the case, that the rectangles are much smaller than the bin,
a better approximation is possible. We refer to this case as packing with large
resources. Fishkin et al. [15] showed that a solution with weight at least (1− ε)
of the optimum can be found if the side length of the bin differ by at least 1/ε4.

An application for the two-dimensional knapsack problem is job scheduling
with a due date, where the jobs have to be assigned to a consecutive line of
processors and the overall profit of accepted jobs has to be maximized. Further
applications of packing problems include container loading, VLSI design and ad-
vertisement placement, i.e., placing rectangular ads on a given board.

In order to generalize our square packing result to higher dimensions, we de-
rived an APTAS for d-dimensional hypercube strip packing and a result similar
to [15] for hypercube knapsack packing with large resources. Both results are mo-
tivated by their two-dimensional equivalents in [11] and [15] and thus also stand
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for themselves. Due to page limitations we present the proofs in the Appendix.

Presentation of the Paper. We begin with some Preliminaries in Section
2. In Section 3 we describe the ( 5

4 +ε)-algorithm for hypercube OKP-2. Before the
presentation of the generalization in Section 5 we state our results on hypercube
OSPP-d and on knapsack packing with large resources in Section 4. In Section
6 we conclude our presentation and point out future work.

2 Notations and Preliminaries

Since the items are squares (or hypercubes) throughout the paper, we refer to
both, the items and their sizes by ai. Let I be a set of items. We denote the
volume of I by Vol(I) =

∑
i∈I a

2
i (
∑
i∈I a

d
i in the d-dimensional setting), the

profit of I by p(I) =
∑
i∈I pi and the optimal profit of a packing by OPT(I).

Bansal et al. showed in [5] how to check the feasibility, i.e., whether a given
set of items can be packed into the bin, in constant time if the number of items
is bounded by a constant. We refer to this method by constant packing.

Coffman et al. [16] analysed the Next Fit Decreasing Height (NFDH) heuristic
for the two-dimensional case. Their work was generalized by Bansal et al. [5] for
d-dimensional packing. We will use NFDH for packing small items. See [5] for a
detailed description of the multidimensional NFDH.

Lemma 1. NFDH

1. The total wasted (unfilled) volume of a packing P of a set I of items smaller
than a constant δ into a cuboid bin B = (b1, . . . , bd) with bi ≤ 1 by NFDH
is bounded by δ

∑d
i=1 bi ≤ δd.

2. Given a set of small, i.e., ai ≤ δ and therefore Vol(ai) ≤ δ2, squares S. If the
total volume V of the given space is at least δ and the total wasted volume
when packing with NFDH is at most δ2 then we can pack the small items
with profit at least (1− 2δ)OPT(S).

Proof. Part 1 is shown in [5]. To see Part 2, let S′ = FracKnap+(S, V − 2δ2),
where FracKnap+(S, V − 2δ2) is the optimal solution of the fractional knapsack
instance with volume bound V −2δ2. The items S are given by their volume and
the optimal solution is derived by the well-known greedy algorithm, including a
possible fractional item, and thus possibly exceeding the volume bound. Since
the volume of every item is at most δ2, we get Vol(S′) ≤ V − δ2. Therefore a
packing of S′ into the volume is possible. Observe that p(S′) ≥ V−2δ2

V OPT(S) ≥
(1− 2δ2

δ )OPT(S) = (1− 2δ)OPT(S). ut
To restrict the number of gaps in a packing, Bansal et al. [5] showed

Lemma 2. Let P be a packing of m hypercubes in [0, 1]d. Then, the remaining
space [0, 1]d \ P can be divided into at most (2m)d non-overlapping cuboids.

For d = 2, the number of rectangles is bounded by 3m.
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Finally, we introduce a shifting technique that we use several times to free
a given line L inside a packing P without losing to much profit. Fishkin et al.
used a similar technique in [15].

Lemma 3. Given a packing P of a list I = (a1, . . . , an) of small (ai ≤ δ)
squares into a rectangle R = (w, h) with width w = 1 and a vertical line L.
If δ ≤ 1

2 , we can derive a packing P ′ of a selection I ′ ⊂ I into R with profit
p(I ′) ≥ (1− 4δ)p(I) such that L does not intersect with any item.

Proof. Let IL be the set of items that intersect L. PartitionR into l = b 1δ c ≥ 1
δ−1

rectangular slices S1, . . . , Sl of width δ and a possible smaller one by drawing
cutting lines with a distance of δ parallel to the bins height as in Figure 1(a).
Find an index i such that the items, that intersect with Si have minimal profit.
Remove all items that intersect with Si and copy the items IL left-aligned into
Si. The remaining profit is

p(S′) ≥ p(S)− 2p(S)
1
δ − 1

≥ (1− 4δ)p(S)

since every item intersects with at most two rectangle Si, Si+1. ut
Note, that the proof is also valid for a rectangle R with h = 1 and a horizontal

line L. Furthermore, it is not necessary that R is a rectangle as long as the cutting
line is at the thinnest part of R so that copying the items is possible, see Figure
1(b) for another possible setting.

w = 1

h . . .S1 S3 S4 Sl

h

L

L

. . .SiS2

. . .

dispose

. . .

(a) Freeing a line L by copying the items
IL left-aligned into Si

L

w = 1

h

. . .

S1 S2

S3 S4 S5

Sl

(b) An irregular shaped R

Fig. 1.

3 Square Packing

We now describe our main result for the two-dimensional case. Later we will
generalize it for d-dimensional packing. In order to ease the generalization, we
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split the description into several parts.

Outline. The first step of the algorithm is a separation of the items into
sets of large, medium and small items. This yields a gap in size between large
and small items and a profit of the medium items that is negligible. Since the
number of large items in the bin is bounded by a constant, we can enumerate
over all possible selections and thus assume the knowledge of an optimal packing
of large items. After that, we consider three different cases for packing: 1) the
large items leave enough remaining space to pack the small items, 2) there are
several large items, and 3) there is only one very large item.

We derive almost optimal solutions for the first and third case and an almost
k+1
k -optimal solution for the second case, where k is the number of large items.

By showing, that any packing with k < 4 can be reduced to either the first or
the third case, we derive an overall approximation ratio of ( 5

4 + ε).

Let 0 < ε ≤ 1/210, ε′ = ε/3. The following separation technique divides an
optimal solution Iopt into sets Lopt of large, Mopt of medium and Sopt of small
items such that p(Mopt) ≤ ε′OPT(I) and thus we can neglect the medium items.

Separation Technique. Let r = d1/ε′e. Consider an optimal solution Iopt
and the sequence α0 = ε′, αi+1 = α4

i ε
′ for i = 0, . . . , r. Define the partition

of Iopt into sets M0 = {s ∈ Iopt : s ≥ α1}, Mi = {s ∈ Iopt : s ∈ [αi+1, αi[}
for 1 ≤ i ≤ r and Ms = {s ∈ Iopt : s < αr+1}. Observe, that there is an index
i ∈ {1, . . . r} such that p(Mi) ≤ ε′p(Iopt) = εOPT(I). Let Lopt = M0∪ . . .∪Mi−1

be the set of large, Mopt = Mi the set of medium and Sopt = Mi+1∪. . .∪Mr∪Ms

the set of small items. Thus p(Lopt∪Sopt) ≥ (1−ε′)OPT(I) and it is sufficient to
approximate this almost optimal solution. Let S = {s ∈ I : s < αi+1}, obviously
Sopt ⊂ S and thus OPT(Lopt ∪ S) ≥ (1− ε′)OPT(I).

Since s ≥ αi for s ∈ Lopt, there are at most 1/α2
i items in Lopt. Thus we can

enumerate over all i ∈ {1, . . . r} and L with |L| ≤ 1/α2
i and use the constant

packing method to check the feasibility of L. Hence assume the knowledge of i
and Lopt. Let PLopt be a packing of Lopt by the constant packing method.

The gap in size between the large and the small items is needed to obtain
an efficient packing of some of the small items in S with NFDH into the gaps
of PLopt . Since |Lopt| ≤ 1/α2

i , there are at most 3/α2
i gaps in PLopt - see Lemma

2. Lemma 1 Part 1 bounds the wasted volume for every gap by 2αi+1. Hence
we can bound the overall wasted volume of a packing with NFDH of the small
items in S into the gaps of PLopt by 3

α2
i
· 2αi+1 = 6α

4
i ε
′

α2
i

= 6ε′α2
i ≤ α2

i , which is a
lower bound for the volume of an item in Lopt.

Now let us see, how to derive a packing in three different cases: 1) enough
remaining space for the small items (Vol(Lopt) ≤ 1− αi), 2) several large items
(|Lopt| = k), and 3) one very large item (amax ≥ 1 − ε′4), where amax is the
biggest item in Lopt.
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Lemma 4. Enough Remaining Space
If Vol(Lopt) ≤ 1 − αi, we can find a selection S′ ⊂ S of small items such that
Lopt and S′ can be packed together and p(Lopt ∪ S′) ≥ (1− 3ε′)OPT(I).

Proof. The remaining space is at least αi and the overall wasted volume is at
most α2

i . As all small items have size at most αi+1 ≤ αi we can apply Lemma
1 Part 2 with δ = αi to find a feasible selection S′ ⊂ S with p(S′) ≥ (1 −
2δ)OPT(S) ≥ (1− 2ε′)OPT(S), where OPT(S) is the optimal profit for packing
S into the remaining space. ut

Lemma 5. Several Large Items
If |Lopt| = k, we can find a selection S′ ⊂ S of small items such that Lopt and
S′ can be packed together and p(Lopt ∪ S′) ≥ ( k

k+1 − 2ε′)OPT(I).

Proof. Let Knapsack(S, V, ε) denote to a solution with accuracy ε for a one-
dimensional knapsack instance with items S and volume bound V . The items
are given by their volume. Let S′ = Knapsack(S, 1 − Vol(Lopt), ε′). Note that
p(Lopt ∪ S′) ≥ (1 − 2ε′)OPT(I). Consider the packing PLopt and use NFDH
to add as much as possible of S′ into the gaps. Let the profit be P1. If S′ is
completely packed, P1 = p(Lopt ∪ S′) ≥ (1 − 2ε′)OPT(I). Otherwise consider a
second packing. Therefore remove the item a∗ with lowest profit from Lopt and
pack the remaining items of Lopt together with S′ into a bin. This is possible
since Vol(a∗) ≥ α2

i and the total waste is bounded by α2
i . Let this profit be P2.

We state that max(P1, P2) ≥ k
k+1p(Lopt ∪ S′) ≥ ( k

k+1 − 2ε′)OPT(I). Assume
Lopt = {a1, . . . ak} and a∗ = ak. Then,

P1 ≥
k∑
i=1

pi ≥ k pk and P2 =
k−1∑
i=1

pi + p(S′) = p(Lopt ∪ S′)− pk

For pk ∈ [0, p(Lopt∪S
′)

k+1 ], P2 ≥ p(Lopt ∪ S′)− p(Lopt∪S′)
k+1 ≥ k

k+1p(Lopt ∪ S′) and

for pk ∈ [p(Lopt∪S
′)

k+1 ,
p(Lopt∪S′)

k ], P1 ≥ k
k+1p(Lopt∪S′). Note, that pk ≤ p(Lopt∪S′)

k
as ak is the item with lowest profit in Lopt. ut

Lemma 6. One Very Large Item
If amax ≥ 1 − ε′4, we can find a selection S′ ⊂ S of small items such that Lopt
and S′ can be packed together and p(Lopt ∪ S′) ≥ (1− 3ε′)OPT(I).

Proof. The proof consists of two parts. First we show that the big item amax
can be packed into the lower left corner of the bin. Second we use the result
for packing with large resources by Fishkin et al. [15] to find an almost optimal
packing for the remaining space.

Consider an optimal packing of Iopt where amax is not placed in the lower left
corner. Notice that the free space to all sides has width at most 1− amax ≤ ε′4.
Draw three lines S1, S2, S3 as on the left side of Figure 2(a). As the items might
have high profit we cannot dispose them directly, but with the shifting technique
of Lemma 3 and δ = ε′4 we obtain a packing without any item intersecting lines
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amax

S1

S2

S3

g1

g2

amax g1

g2

1− amax

(a) Almost optimal solution with amax in lower
left corner

S4

S5

amax

1− amax

1 + amax

(b) Shifting the remaining space

Fig. 2. One very large item

S1, S2, S3. Thus replace the packing as in Figure 2(a) on the right side, such that
amax is placed in the lower left corner.

For ε ≤ 1/210, Fishkin et al. [15] described an algorithm that finds a packing
for a subset S′ of a set of rectangles S into a bin (1, b) where b ≥ 1/ε4 with
profit p(S′) ≥ (1 − ε)OPT(S). We can consider the remaining space in the bin
as a strip of size (1−amax, 1 +amax) by cutting at S4 and rotating a part of the
space as shown in Figure 2(b). Scaling this strip and all small items by 1

1−amax
gives a strip of size (1, b) where b = 1+amax

1−amax ≥ 1/ε′4 (as amax ≥ 1 − ε′4). Thus
we can find a packing with profit at least (1 − ε′)OPT(S). By cutting again at
S5, the solution can be adopted to the original shape. The rotation is possible
since we only have square items. As we have a total of five applications of the
shifting technique, the loss is bounded by 5 · 4ε′4OPT(S) ≤ ε′OPT(S). ut

We now give a simple but very important lemma, which takes the full ad-
vantage of the square shapes of the items, namely that any packing with k < 4
large items can be reduced to either the first or the third case. Our intuition is,
that it is impossible to fill a unit-size bin with either two or three equally big
squares. This also turns out to be the reason for the improving approximation
ratio with higher dimensions, e.g., either one very large or more than seven cubes
are needed to fill a cube bin almost completely.

Lemma 7. If |Lopt| < 4, then either Vol(Lopt) ≤ 1− αi or amax ≥ 1− 1/ε′4.

Proof. Suppose that |Lopt| ∈ {2, 3}. If amax ≤ 1/2, then Vol(Lopt) ≤ 3/4 ≤
1 − αi. With amax > 1/2 the smaller items in Lopt can have a size of at most
1 − amax so that Lopt is still feasible. As there are at most two more items in
Lopt, we can bound the total volume by Vol(Lopt) ≤ f(x) ≤ x2 + 2(1− x)2. It is
easy to show, that f(x) ≤ 1− α1 = 1− ε′5 for x ∈ [ 12 , 1− ε′4] - see also Figure 4
for the multidimensional case. ut
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The complete algorithm A2 is summed up in Algorithm 1. The following
theorem is immediate since 1

4
5−2ε′

≤ 5
4 + ε.

Theorem 1. There is a polynomial time algorithm for hypercube OKP-2 with
performance ratio ( 5

4 + ε).

for every i ∈ {1, . . . , r} and feasible L ⊂ {s ∈ I : s ≥ αi} with |L| ≤ 1/α2
i do

case Vol(L) ≤ 1− αi: solve almost optimal with Lemma 4
case amax ≥ 1− ε′4: solve almost optimal with Lemma 6
case |L| ≥ 4: solve with Lemma 5

end
output the packing with the best profit

Algorithm 1: ( 5
4 + ε)-algorithm A2 for square packing

4 Useful Tools for Hypercube Packing

In the previous section we used a result on packing with large resources to de-
rive the algorithm for the case of one very large item. In order to generalize
our algorithm we need a d-dimensional variant of this result. The original two-
dimensional algorithm from Fishkin et al. [15] is based on an AFPTAS for strip
packing (OSPP-2) by Kenyon and Rémila [11]. Similarly, we require an APTAS
for hypercube strip packing to derive our result on hypercube knapsack packing
with large resources. See Appendix 7.1 and 7.2 for the proofs of the following
theorems.

Hypercube Strip Packing. Let C ≥ 1 be a bound for the size of the basis.
The d-dimensional hypercube orthogonal strip packing problem (hypercube OSPP-
d) is defined as follows. Given a list I = (a1, . . . , an) of hypercubes ai ∈ (0, 1]
and a (d − 1)-dimensional cuboid basis of the strip B = (b1, b2, . . . , bd−1) with
1 ≤ bi ≤ C. The problem is to find a feasible packing P of I into a strip with
basis B and unlimited height so that the total height of the packed items is
minimized. Using methods from [11] and [5] we derived an algorithm AStrip,ε
that holds

Theorem 2. AStrip is an asymptotic polynomial time approximation scheme
(APTAS) for hypercube OSPP-d with additive constant KStrip,ε for fixed ε > 0
and C ≥ 1.

Hypercube Knapsack Packing with Large Resources. The hypercube
OKP-d with large resources is defined as follows. Given a list I = (a1, . . . , an)
of hypercubes ai ∈ (0, 1], associated profits pi > 0 and a bin B = (b1, b2, . . . , bd)
with sizes bi ≥ 1. The problem is to find a feasible packing P of a selection I ′ ⊂ I
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into the bin B with maximal profit. Let V =
∏d
i=1 bi be the volume of the bin.

Using the algorithm AStrip and ideas from [15], we derived an algorithm ALR
that satisfies

Theorem 3. If V ≥ KLR,ε then algorithm ALR finds a feasible packing for a
selection I ′ ⊂ I with profit at least (1− ε)OPT(I).

The running time of ALR is polynomial and KLR,ε is constant for fixed ε > 0.

5 Hypercube Knapsack Packing

Now we are ready to present the generalization of our main result, a ( 2d+1
2d

+ ε)-
approximation for hypercube knapsack packing. In the square packing algorithm
we considered three different cases, packing with enough remaining space, pack-
ing with several large items and packing with only one large item. The latter
case was motivated by the observation, that three squares cannot fill a unit bin
almost completely unless one of the squares is hugh. This observation is gener-
alized to a number of 2d − 1 hypercubes in the d-dimensional case.

Outline. First, we give new parameters for the separation step such that
the first two cases hold even for hypercubes. Second, we show how to handle the
third case, applying ALR from the previous section. Finally, we observe that for
a number of up to 2d − 1 hypercubes, either the remaining space is big enough
or there is only one very large item.

Separation. Let ε′ = ε/3 and K ≥ KLR,ε′ , the constant for algorithm ALR
as in the previous section. Let r = d1/ε′e.

Use the sequence α0 = 1
K , αi+1 = α3d

i ε
′ for i = 0, . . . , r to separate an optimal

solution Iopt into the sets Lopt, Mopt and Sopt as before. Similar to the square
packing algorithm, the parameters αi are chosen such that the overall wasted
volume of a packing of small items into the gaps of L with NFDH is bounded
by αdi , the lower bound of the volume of a large item in L - see Lemmas 1 and
2. Again we enumerate over all i ∈ {1, . . . r} and |L| ≤ 1/αdi and assume the
knowledge of i and Lopt.

Since the overall wasted volume is bounded by the size of an item in Lopt,
the first two cases can be handled similarly - see Lemma 4 and Lemma 5.

Now, we show how an almost optimal packing can be derived for amax ≥
1− 1

K . First, we show that a special packing structure, similar to packing amax
into the lower left corner, does not change the optimal value significantly and
second, we use the shifting technique and some rotations to apply Theorem 6.
Note, that the shifting technique is similar for d-dimensional hypercubes, as long
as one direction of the space R has length 1.

Well-structured Packing. A packing P is called well-structured if the
biggest item amax is located in the origin (0, . . . , 0) and the hypercube space
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of size 1− amax in the opposite corner as well as all hyperplanes, defined by the
facets of amax are completely free of items. See Figure 3(a) for a well-structured
packing. Similar to the two-dimensional case, we can apply the shifting technique
to reorder an optimal solution (see Appendix 7.3 for a detailed proof)

Lemma 8. There is a well-structured packing of a selection I ′ ⊂ Iopt with profit
p(I ′) ≥ (1− 2ε′)OPT(I).

Applying Algorithm ALR of Theorem 6. We cut and rotate the remain-
ing space of a well-structured packing of I ′ around amax such that it builds a
cuboid bin that is much bigger than the remaining items. Then we apply The-
orem 6 and by cutting again and reassembling to the original position a valid
solution is derived.

Observe, that the remaining space in the bin, with the exception of a hyper-
cube of size 1 − amax ≤ 1

K in the opposite corner of the origin, can be divided
into d differently rotated spaces S1, . . . , Sd of size (1− amax, amax, . . . , amax, 1)
- see Figure 3(b). Note that, since we consider a well-structured packing, all
items of the near optimal solution I ′ are completely included in one of these
spaces. Rotate all spaces into the same orientation, assemble them to a bin
of size (1 − amax, amax, . . . , amax, d) and scale the bin and all small items with

1
1−amax . The volume of the bin is bigger than 1

1−amax ≥ K (since amax ≥ 1− 1
K ).

So we can apply Theorem 6 and therefore find a packing for a selection S′ of
items with profit p(L ∪ S′′) ≥ (1− 3ε′)OPT(I ′).

Reassembling the strip-like bin requires d − 1 applications of the shifting
technique and can thus be done with losing at most another ε′OPT(I) of the
profit. Let S′ be the set of small items after the reassembling. We proved

Lemma 9. If amax ≥ 1− 1
K , we can find a selection S′ ⊂ S of small items such

that L and S′ can be packed together and p(L ∪ S′) ≥ (1− 4ε′)OPT(I).

amax

x1

x2

x3

1

free of items

space for

(a) Free space in a well-structured pack-
ing

amax

x1

x2

x3
space for

S3

S1
S2

(b) Division of the remaining space into
S1, . . . , Sd

Fig. 3. Packing with one very large item amax
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Now let us see that, if |Lopt| < 2d, either Vol(Lopt) ≤ 1−αi or amax ≥ 1− 1
K .

Similar to the two-dimensional analysis, we get a volume bound of Vol(Lopt) ≤
fd(x) = xd+(2d−1)(1−x)d for x ∈ [ 12 , 1], see Figure 4. With the second derivate
it is easy to see, that fd(x) ≤ 1− 1

2d
for x ∈ [ 12 ,

3
4 ] and fd(x) ≤ x for x ∈ [ 34 , 1].

Thus amax ≤ 1 − 1
K implies Vol(Lopt) ≤ 1 − 1

K for 1
K ≤ 1

2d
. Note that 1

K ≤ 1
2d

can be achieved by choosing K ≥ 2d. See Appendix 7.4 for more details. We
showed

Theorem 4. There is a polynomial time algorithm for hypercube OKP-d with
performance ratio ( 2d+1

2d
+ ε).

0.5 0.75 1

0.5

1

Fig. 4. The volume functions fd(x) for d = 2, . . . , 10 and x ∈ [ 12 , 1] (solid), and
the, on x ∈ [ 34 , 1], dominating function g(x) = x (slashed)

6 Conclusion and Future Work

For the special case of packing hypercube items we derived an approximation
algorithm for OKP-d with performance ratio ( 2d+1

2d
+ ε) that is, surprisingly,

improving with the dimension. Already for the two- and three-dimensional case,
we significantly improve upon the best-known general algorithms.

We gave PTAS-like approximations for the cases that either the remaining
volume after packing the large items is big enough or there is only one very
large item. In the case of several large items, the gap structure becomes more
complicated with increasing number of items. Although for square packing it
seems to be possible to handle the cases |Lopt| = 4, since the remaining space
has the shape of four strip-like bins, and |Lopt| = 5, since it can be reduced to
either the case with four large items or the case with enough remaining space,
we could not derive a general method to cope with large numbers of items in
Lopt. Further research should thus be concentrated on the case of several large
items in order to solve the question whether or not a PTAS for hypercube OKP-d
exists.
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7 Appendix

In the Appendix we present the proofs that were omitted due to page limitations.
Our results on hypercube OSSP-d and hypercube OKP-d with large resources are
technical generalizations of the original results in [11] and [15], respectively. Since
we cannot present our result in them same detail as done in the original papers,
they are an important reference.

7.1 Hypercube Strip Packing

Here we outline an APTAS for the hypercube OSPP-d. The methods for this
result are closely related to the work of Bansal et al. [5] and Kenyon, Rémila
[11]. Let ε > 0 be a given accuracy and C a given constant bound for the side
length of the basis. We define hypercube OSPP-d as follows.

Given a list I = (a1, . . . , an) of hypercubes ai ∈ (0, 1] and a (d − 1)-
dimensional cuboid basis B = (b1, b2, . . . , bd−1) with 1 ≤ bi ≤ C. The problem is
to find a feasible packing P of I into a strip with basis B and unlimited height
so that the total height of the packed items is minimized.

Outline. First, we use the separation technique to derive sets L of large,
M of medium and S of small items such that the medium items make up only
a marginal amount of the total volume, but the gap in size between the large
and the small items is considerable. Second, we group the large items and round
them to certain threshold items which are packed almost optimally into the
strip. Third, we pack some of the small items into the gaps of the large items
and finally, we pack the remaining small items and the medium items separately
with NFDH.

Preliminaries. We denote the height of a packing of a set I of items by
h(I) and the height of an optimal packing by OPT(I). For a given basis B =
(b1, . . . , bd−1) or bin B̃ = (b̃1, . . . , b̃d) we define the volume and the sum of the
surface area of the different facets of B and B̃ by

Bvol =
d−1∏
i=1

bi ≤ Cd−1 BF =
∑

S⊂{1,...,d−1}
|S|=d−2

∏
i∈S

bi ≤ (d− 1)Cd−2

B̃vol =
d∏
i=1

bi ≤ Cd B̃F =
∑

S⊂{1,...,d}
|S|=d−1

∏
i∈S

bi ≤ dCd−1

Note that B̃F = BF +Bvol for b̃i = bi for 1 ≤ i ≤ d− 1 and b̃d = 1.

The following lemma is proven similar to Lemma 1 Part 1 as in [5].
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Lemma 10. The total wasted (unfilled) volume of a packing P of a set I of
items smaller than a constant δ into a bin B̃ = (b̃1, . . . , b̃d) by NFDH is bounded
by δBF .

Thus the total wasted volume in a strip of basis B and height 1 is bounded by
δ(BF +Bvol).

We introduce a usual analysis for a layer based strip packing, as proven for
the three-dimensional case by Miyazawa and Wakabayashi in [17].

Lemma 11. Let P be a packing of a list I of hypercube items into a strip of
basis B = (b1, b2, . . . , bd−1) such that the items are packed into layers l1, . . . lk
and items in layer li are not smaller than items in layer lj for i < j. If the area
guarantee, i.e. the filled basis of each layer, for all but the last layer is at least s
then the height of the strip is bounded by

h(I) ≤ V ol(I)
s

+ amax

where amax is the biggest item in I.

Separation. Let ε′ = ε/4 and r = d1/ε′e. Separate the items I as in
the description of the separation technique in Section 3, using the sequence
α0 = min(BvolBF

ε′, ε′), αi+1 = α2d
i

ε′

6dBd−1
vol (BF+Bvol)

for i = 1, . . . , r + 1. Note, that
we separate I instead of Iopt, which does not exist for strip packing. We obtain,
that there is an index i and sets L, M and S with V ol(M) ≤ ε′V ol(I). By enu-
merating over all indices i ∈ {1, . . . r} we can assume the knowledge of a suitable
i and therefore L, M and S.

Packing the Large Items. To pack the large items almost optimal, we use
a rounding procedure which does not increase the optimal packing significantly
but reduces the distinct item sizes to a constant.

All items in L are bigger than αi. Let n be the number of items in L. Sort L
in non-increasing order, partition L into K = dBvol/(ε′αdi )e consecutive groups
g1, . . . , gK of at most H = dn/Ke items and round each item to the biggest in
the group to derive a rounded set of items J . Bansal et al. showed in [5], that

OPT(J) ≤ d(1 + ε′)OPT(L)e.

As the strips basis is bounded and therefore at most M = bBvol/αd−1
i c

projections of items fit into it, we can find all possible packing patterns of
the (d − 1)-dimensional projection of the hypercubes with the constant pack-
ingmethod. With a linear program as in [11] we can find an optimal fractional
solution with at most K layers that correspond to a packing pattern. Kenyon
and Rémila [11] show how to derive a valid integer packing PL of L with height
h(L) ≤ OPT(J) +K ≤ d(1 + ε′)OPT(L)e+K.
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Packing the Small Items. In order to pack some of the small items of S
together with a packing PL of L we use NFDH in the gaps of PL. Recall, that
there are at most (2m)d gaps for m items - Lemma 2. We show, that the overall
waste after packing the small items is low by counting the free gaps in layers of
height 1 and estimating the waste per gap.

Cut the strip at integer heights and examine a layer li between two such cuts.
Obviously, gaps that intersect with a cut are also cut and thus counted twice.
The advantage of cutting the strip into layers is, that the number of large items
in each layer is bounded. We add the volume of the adjoining layers li−1 and li+1

into the upper bound for the number of gaps since each item might be included
in up to two layers. We can bound the number of items in layer li by 3Bvol/αdi
and therefore the number of gaps by 6dBdvol/α

2d
i .

With Lemma 10, we bound the waste in each gap by αi+1(BF +Bvol). Hence
the total wasted volume per layer is bounded by

6dBdvol
α2d
i

· αi+1(BF +Bvol) ≤ 6dBdvol
α2d
i

· α2d
i · ε′

6dBd−1
vol (BF +Bvol)

(BF +Bvol) ≤ ε′Bvol.

As we considered a random layer of height 1, this holds for every layer. Thus
the total waste in the strip is bounded by ε′Bvolh(L) if there are enough items
in S. Let S′′ be the set of packed and S′ the set of remaining small items. Pack
S′ with NFDH in a separate strip PS .

Packing the Medium Items. In order to pack the medium items M we
use the NFDH algorithm. Let the derived packing be PM and its height h(M).
Since all items are smaller than αi ≤ α0 = min(BvolBF

ε′, ε′) and thus (Lemma 10)
the area guarantee is at least (Bvol −Bvolε′) = (1− ε′)Bvol, we get (see Lemma
11)

h(M) ≤ 1
1− ε′

V ol(M)
Bvol

+ ε′ ≤ 2ε′OPT (I) + ε′

The last inequality is due to 1
1−ε′ ≤ 2 for ε′ ≤ 1/2 and V ol(M)

Bvol
≤ ε′V ol(I)

Bvol
≤

ε′OPT (I).

Analysis. The complete algorithm AStrip is given in Algorithm 2. We dis-
tinguish between two cases, according to S′ after step 3.

First case: S′ = ∅. We showed, that the total height of the strip PL is h(L) ≤
h(J) ≤ d(1 + ε′)OPT(L)e + K. Together with the strip PM we derived a total
height of h(L) +h(M) ≤ d(1 + 3ε′)OPT(I)e+K+ ε′ ≤ (1 + 3ε′)OPT(I) +K+ 2.

Second case: S′ 6= ∅. In this case, the small items fill up almost all volume of
the strip of L. As V ol(S′′ ∪L) ≥ (1− ε′)Bvolh(L) we can estimate the height of
PS′ (similar to PM ) and PL by

h(S ∪ L) = h(L) + h(S′) ≤ 1
1− ε′

V ol(S′′ ∪ L)
Bvol

+
1

1− ε′
V ol(S′)
Bvol

+ αi

≤ (1 + 2ε′)OPT(I) + ε′
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as V ol(I)
Bvol

≤ OPT(I) and 1
1−ε′ ≤ 1 + 2ε′ for ε′ ≤ 1/2. Thus h(S ∪ L) + h(M) ≤

(1 + 4ε′)OPT(I) + 2ε′.

Since ε′ = ε/4 we get an overall height of at most (1 + ε)OPT(I) + K +
2. We denote the upper bound for the additive constant K + 2 by Kε,C =
d4Cd−1/(εαdd4/εe)e+ 2 so that we can refer to it later. We showed

Theorem 5. The algorithm AStrip is a polynomial time approximation scheme
for hypercube OSSP-d with additive constant Kε,C . Moreover, the packing of
AStrip consists of at most Kε,C layers that are associated to certain packing
patterns or to the medium items.

1. Find i ∈ {1, . . . , r} such that V ol(M) ≤ ε′V ol(I),
2. round the items in L and find an almost optimal packing PL of L,
3. pack S with NFDH into the free space of PL, denote S′ ⊂ S to the items that
could not be packed,
4. pack the remaining items of S′ with NFDH into a free strip PS ,
5. pack M with NFDH into a free strip PM ,
6. combine the strips PL, PS and PM to PI ,
7. output PI .

Algorithm 2: Algorithm AStrip for hypercube OSPP-d

7.2 Hypercube Knapsack Packing with Large Resources

Our second result is the application of the algorithm AStrip on knapsack packing
with large resources similar to [15], where Fishkin et al. applied an AFPTAS for
strip packing [11] on 2-dimensional knapsack packing with large resources.

Definition of Hypercube OKP-d with Large Resources. Let ε > 0 be
a given accuracy. Let ε′ = ε

16d−6 and Kε′ = Kε′,1/ε′ where Kε′,1/ε′ is defined as
in the previous section with C = 1/ε′.

Given a list I = (a1, . . . , an) of hypercubes ai ∈ (0, 1], associated profits
pi > 0 and a bin B = (b1, b2, . . . , bd) with sizes bi ≥ 1 and volume Bvol =∏d
i=1 bi ≥ Kε′

ε′d+1 . The problem is to find a feasible packing P of a selection I ′ ⊂ I
into the bin B with maximal profit.

Outline. First, cut the bin into several parts and assemble them so that it
resembles a strip with bounded basis. This is important to apply the algorithm
AStrip of the previous section. Second, we show that there is an “almost” opti-
mal solution (i.e. optimal profit but exceeding the bins size) that has a special
structure, resembling the packing of the algorithm of the previous section. Third,
we guess this structure by enumerating over all possibilities and use knapsack
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instances to select items for the packing. Finally, we pack the selected items into
the strip, using the algorithm AStrip and possibly use the shifting technique to
decrease the height of the packing to fit into the bin.

Assembling a Strip-Like Bin. Let k be the lowest index with bk ≥ 1/ε′.
Let t be the lowest integer such that bk ≤ t/ε′. Cut the bin in direction k
into t parts of equal size. Let b′k = bk/t be the new size in dimension k. Note
that 1/2ε′ ≤ b′k ≤ 1/ε′ and therefore the shifting technique can be applied with
δ = 2ε′, ai ≤ 1 and h ≥ 1/δ to remove each cut into the prior part of the bin,
losing not more than 8ε′OPT(I) (see Lemma 3). Rearrange the bin such that the
equal parts are piled up in direction of the last dimension and proceed similarly
with the other dimension.

Let all but the last dimension be bounded by 1/ε′. Thus, bd ≥ Bvol/( 1
ε′ )

d−1 ≥
Kε′
ε′2 as the total volume does not change with the rescaling. The total loss in

profit is bounded by 8(d − 2)ε′OPT(I). Suppose a packing P of I ′ ⊂ I for
the newly assembled bin is known. With reverse engineering we reassemble the
original bin and thus derive a valid packing P ′ for it. The loss is bounded by
8(d − 2)ε′p(I ′) again. Thus we approximate the newly assembled bin and re-
fer to this bin from now on. The optimal profit for the new bin is denoted by
OPTnew(I) ≥ (1− 16(d− 2)ε′)OPT(I).

Almost Optimal Packing with Special Structure. Consider an opti-
mal solution Iopt and the packing PStrip of Iopt produced by the strip packing
algorithm AStrip of the previous section. The height of the packing is

hStrip(Iopt) ≤ (1 + ε′)OPTStrip(Iopt) +Kε′

≤ (1 + ε′)bd + ε′2bd

≤ (1 + 2ε′)bd

as bd ≥ Kε′
ε′2 and OPTStrip(Iopt) ≤ bd. Moreover there are at most Kε′ layers

that correspond to certain packing patterns or to the medium items.

Since we obviously do not know Iopt, we have to guess the structure of Popt.
For that purpose, round each layer to the next value in R = {( tε′Kε′

) · bd|t =

1, . . . , dKε′ε′ e}. Each layer is increased by at most ε′

Kε′
bd and thus the new total

height is bounded by H ≤ (1 + 2ε′)bd +Kε′
ε′

Kε′
bd ≤ (1 + 3ε′)bd.

Recapitulate, that there is a packing P̃ of Iopt with height h̃ ≤ (1 + 3ε′)bd,
optimal profit (for the newly assembled bin), at most Kε′ layers with heights
li ∈ R and an index i separating the sets L of large, M of medium and S of
small items as in the strip packing algorithm.

Enumeration. Enumerate over all possible indices i ∈ {1, . . . d1/ε′e}, num-
bers k ≤ Kε′ of threshold items t1 ≥ . . . ≥ tk from L. Calculate all packing pat-
terns (including an empty one) with these threshold items and enumerate over all
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selections of m ≤ k + 1 packing patterns T1, . . . Tm with Ti = (Ti1, . . . , Tik) and
their layer heights l1, . . . lm ∈ R. Let lm be the layer height for the medium items.

Selecting Items. Assuming that the threshold items t1 ≥ . . . ≥ tk ∈ L, the
packing patterns T1, . . . Tm with Ti = (Ti1, . . . , Tik) and their heights l1, . . . lm ∈
R are known, we use knapsack instances to find almost optimal selections of
items of every size.

Let Li = {i ∈ L : ai ∈ [ti, ti+1[} be the set of items between the threshold
sizes (assume that tk+1 denotes the smallest item in L). Observe, that in P̃ the
total height of slots for Li is given by hi =

∑m−1
j=1 Tjilj . Therefore Li∩Iopt satis-

fies
∑
i∈Li∩Iopt ai ≤ hi. Now let L′i = Knapsack(Li, hi, ε′) be our approximation

for Li ∩ Iopt. Let L′ = L′1 ∪ . . . ∪ L′k.
Analogously, we get a volume bound for S∩Iopt with VS =

∑m−1
j=1 Fj lj where

Fj is the free basis in configuration Ti. Moreover we have the volume bound for
M ∩ Iopt as the volume of the layer for the medium items VM = lmBvol. Define
S′ = Knapsack(S, VS , ε′) and M ′ = Knapsack(M,VM , ε

′) where the items in S
and M are given by their volume. The selection of the items is done this way to
yield

Lemma 12. The overall profit of this selection is

p(L′) ≥ (1− ε′)p(Lopt)

p(M ′) ≥ (1− ε′)p(Mopt)

p(S′) ≥ (1− ε′)p(Sopt)
and thus p(L′) + p(M ′) + p(S′) ≥ (1 − ε′)OPTnew(I). Furthermore, the height
of a packing P with AStrip, where Lopt, Mopt and Sopt are substituted by L′, M ′

and S′, respectively, is at most h ≤ h̃+Kε′ ≤ (1 + 6ε′)bd

Proof. See Fishkin et al. [15] for a similar proof that can easily be adopted.

Packing L′, M ′ and S′. Pack I ′ = L′ ∪M ′ ∪ S′ with AStrip to derive a
packing of height at most (1 + 6ε′)bd. Note that the shifting technique can also
be used in the case that the items have size ai ∈ (0, 1] and the height is h ≥ 1/δ.
Thus apply the shifting technique with δ = 1/bd to lower the packing under the
height of bd - see also the Note on the shifting technique in Section 7.3 - and
derive a profit of

p(I ′′) ≥ (1− 4(6ε′bd + 2)
1
bd

)p(I ′) ≥ (1− 25ε′)p(I ′)

since 2
bd
≤ ε′.
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Assemble a new bin with basis B′,
for every i ∈ {1, . . . , r}, k ≤ Kε′ threshold items t1 ≥ . . . ≥ tk, m ≤ k + 1
packing patterns T1, . . . Tm and their layer heights l1, . . . lm ∈ R do

calculate L′
j , M

′ and S′ for j = 1, . . . k,
pack L′

j , M
′ and S′ with AStrip into a strip of basis B′,

if height h ≤ (1 + 6ε′)bd then
keep the solution

end

end
select the solution with the best profit,
reduce the height with the shifting technique under bd,
cut the bin and reassemble it to the original shape

Algorithm 3: Algorithm ALR for hypercube OKP-d with large resources

Algorithm. The overall algorithm ALR is summarized in Algorithm 3. The
achieved profit is

p(I ′′) ≥ (1− 25ε′)p(I ′) ≥ (1− 25ε′)(1− ε′)OPTnew(I)
≥ (1− 26ε′)(1− 16(d− 2)ε′)OPT(I)
≥ (1− (16d− 6)ε′)OPT(I)
≥ (1− ε)OPT(I)

With KLR,ε = Kε′
ε′d

we showed

Theorem 6. ALR is a polynomial time algorithm for hypercube OKP-d with
large resources with performance ratio (1 + ε) if the bins size is at least KLR,ε.

7.3 Existence of a Well-Structured Packing with Sufficient Profit

We show Lemma 8:
“There is a well-structured packing of a selection I ′ ⊂ Iopt with profit p(I ′) ≥
(1− 2ε′)OPT(I).”

Proof. Let (x1, . . . , xd) be the position of amax in a packing Popt of an optimal
solution Iopt = Lopt∪Mopt∪Sopt. As usual we neglect Mopt. Thus p(Lopt∪Sopt) ≥
(1− ε′)OPT(I). Let i be an index with xi > 0. We apply the shifting technique
2(d − 1) times to be able to exchange amax with another part of the bin such
that x′j = xj for j 6= i and xi = 0.

To do this, free the hyperplanes H1, . . . ,Hd−1 and H̃1, . . . , H̃d−1 that are
defined by the facets of amax with the exception of the hyperplanes orthogonal
to the ith-dimension - see Figure 5. No item in the hypercuboid C between the
lower xi facet of amax and the bin intersects any of the hyperplanes after this
step. Thus amax and C can be exchanged without losing any further profit.

Iterative application of this step gives a sequence of at most 2(d − 1) · d
applications of the shifting technique. Now we free all hyperplanes, that are
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amax

C
x1

x2

H1 H̃1

amax

x1

x2

x3

C

H1 H̃1

H2

H̃2

Fig. 5. The hyperplanes H1, . . . ,Hd−1 and H̃1, . . . , H̃d−1 for the application of
the shifting technique to move amax along xd for d = 2 and d = 3

defined by the facets of amax with d applications of the shifting technique. Note,
that a the shifting technique can be extended to free small spaces of height ≤ kδ
instead of hyperplanes, losing not more than 4(k + 2)δ of the profit. Thus we
finally free the hypercube of size 1−amax in the opposite corner of the bin with a
final shifting step. In total we need 2(d−1)d+d ≤ 2d2 application of the shifting
technique for a hyperplane and one application for a space of height 1 − amax.
Since amax ≥ 1− 1

K we can use δ = 1
K and k = 1 to get a profit of

p(I ′) ≥ p(Lopt ∪ Sopt)− 8d2 1
K
p(Lopt ∪ Sopt)− 4(1 + 2)

1
K
p(Lopt ∪ Sopt)

≥ (1− (8d2 + 12)
1
K

)p(Lopt ∪ Sopt)
≥ (1− ε′)p(Lopt ∪ Sopt)
≥ (1− 2ε′)OPT(I)

for ε′ ≤ 1
8d2+12 .

Thus we derived a well-structured packing P of a selection I ′ ⊂ Iopt with
sufficient profit. ut

7.4 Distinction into Three Cases for Hypercube OKP-d :

Assume that amax is the biggest item in Lopt and |Lopt| < 2d. We show that
amax ≤ 1− 1

K implies V ol(Lopt) ≤ 1− 1
K ≤ 1− αi.

We distinguish the cases 1) amax ≤ 1
2 , 2) amax ∈ [ 12 ,

3
4 ] and 3) amax ∈ [ 34 , 1].

If amax ≤ 1
2 we get Lopt ≤ (2d−1)( 1

2 )d = 1− ( 1
2 )d ≤ 1− 1

K . Now we consider
the function fd(x) = xd+(2d−2)(1−x)d that is an upper bound for the volume -
see Figure 4. Consider the two variants gd(x) = fd(x)− (1− ( 1

2 )d) on the domain
x ∈ [ 12 ,

3
4 ] and hd(x) = fd(x)−x on x ∈ [ 34 , 1]. Note that the second derivative of
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all three functions is equal, e.g. fd(x)′′ = (d−1)dxd−2+(d−1)d(2d−2)(1−x)d−2

and greater than zero on x ∈ [ 12 , 1], since both summands are positive on this
domain. Thus fd, gd and hd are convex on x ∈ [ 12 , 1] and gd and hd have their
maximum in 1

2 or 3
4 , and 3

4 or 1, respectively.

Claim. fd( 3
4 ) ≤ fd−1( 3

4 ) for d ≥ 3.

Proof.

fd(
3
4

) ≤ fd−1(
3
4

)

⇔
(

3
4

)d
+ (2d − 2)

(
1
4

)d
≤
(

3
4

)d−1

+ (2d−1 − 2)
(

1
4

)d−1

⇔ 3d + 2d − 2
4d

≤ 3d−1 + 2d−1 − 2
4d−1

⇔ 3d + 2d − 2 ≤ (3d−1 + 2d−1 − 2)4
⇔ 3d + 2d − 2 ≤ 3 · 3d−1 + 3d−1 + 2 · 2d−1 + 2 · 2d−1 − 8
⇔ 3d + 2d − 2 ≤ 3d + 2d + 2d + 3d−1 − 8

and this is true since d ≥ 3 and thus 2d ≥ 8 and 3d−1 ≥ 9.

The evaluation at the points of interest gives gd( 1
2 ) = 0 and gd( 3

4 ) = fd( 3
4 )−

(1 − ( 1
2 )d) ≤ f2( 3

4 ) − (1 − ( 1
2 )d) ≤ f2( 3

4 ) − (1 − ( 1
2 )2) = g2( 3

4 ) = − 1
16 . Thus

gd(x) ≤ 0 and fd(x) ≤ 1− ( 1
2 )d for x ∈ [ 12 ,

3
4 ].

For hd we get hd( 3
4 ) = fd( 3

4 ) − 3
4 ≤ f2( 3

4 ) − 3
4 = − 1

16 and hd(1) = 0. Thus
hd(x) ≤ 0 and fd(x) ≤ x for x ∈ [ 34 , 1]. We showed, that x ≤ 1 − 1

K implies
fd(x) ≤ 1− 1

K .
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