Approximating the Orthogonal Knapsack Problem for Hypercubes

Rolf Harren

University of Dortmund

2007.09.07

Rolf Harren Approx. the Orthogonal Knapsack Problem for Hypercubes

Outline

Introduction

- Problem
- Preparation

Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing
 - Generalization

Summary

Outline

Preparation

2 Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing Generalization
 - Generalization

Summary

< 🗇 🕨

- 신문 () - 신문

Multidimensional Orthogonal Packing Problems

```
Input: 
d-dimensional cuboid items a_1, \ldots, a_n
```


Objective:

an orthogonal, non-rotational and non-overlapping packing into a given space such that...

Multidimensional Orthogonal Packing Problems

BIN PACKING ...the number of bins is minimized

STRIP PACKING ...the total height is minimized

KNAPSACK PACKING ...the profit of the packed selection of items is maximized

Rolf Harren

Approx. the Orthogonal Knapsack Problem for Hypercubes

Orthogonal Knapsack Packing for Hypercubes

Considered problem

All items are squares, cubes or hypercubes $0 < a_1, \ldots, a_n \le 1$ Items have profits p_i Bin has unit size

ヘロト 人間 ト ヘヨト ヘヨト

э

	BIN PACKING		STRIP PACKING	
2- dim	1.525	Bansal, Correa,	AFPTAS	Kenyon, Rémila
	APX-complete	Sviridenko		
3- dim	3.382		1.691	Bansal, Han, Iwama
				Sviridenko, Zhang
d- dim	open		open	

	Hypercube BIN PACKING		Hypercube STRIP PACKING	
2- dim	APTAS	Bansal, Correa,	AFPTAS	
		Kenyon, Sviridenko		
d- dim	APTAS	Bansal, Correa,		
		Kenyon, Sviridenko		

・ロト ・聞ト ・ヨト ・ヨト

	BIN PACKING		STRIP PACKING	
2- dim	1.525	Bansal, Correa,	AFPTAS	Kenyon, Rémila
	APX-complete	Sviridenko		
3- dim	3.382		1.691	Bansal, Han, Iwama
				Sviridenko, Zhang
d- dim	open		open	

	Hypercube BIN PACKING		Hypercube STRIP PACKING	
2- dim	APTAS	Bansal, Correa,	AFPTAS	
		Kenyon, Sviridenko		
d- dim	APTAS	Bansal, Correa,	APTAS	
		Kenyon, Sviridenko		

・ロト ・聞ト ・ヨト ・ヨト

	KNAPSACK PACKING			
	Ge	Hypercube		
2- dim	$2 + \epsilon$	Jansen, Zhang	$\frac{5}{4} + \epsilon$	
3- dim	$7 + \epsilon$	Diedrich, H., Jansen	$\frac{9}{8} + \epsilon$	
	APX-complete	Thöle, Thomas	-	
d- dim	open		$\frac{2^d+1}{2^d}+\epsilon$	

Further results exist on

PACKING WITH LARGE RESOURCES, MAXIMIZING THE VOLUME, MAXIMIZING THE NUMBER, ...

ヘロト 人間 とくほとくほとう

E DQC

	KNAPSACK PACKING			
	General	Hypercube		
2- dim	$2+\epsilon$ Jansen, Zhang	$\frac{5}{4} + \epsilon$		
3- dim	$7 + \epsilon$ Diedrich, H., Jansen	$\frac{9}{8} + \epsilon$		
	APX-complete Thöle, Thomas	-		
d- dim	open	$\frac{2^d+1}{2^d}+\epsilon$		

Further results exist on

PACKING WITH LARGE RESOURCES, MAXIMIZING THE VOLUME, MAXIMIZING THE NUMBER, ...

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Open Question

NP-Completeness

It is unknown for all previous packing problems whether the restriction to Hypercube packing is NP-hard for $d \ge 3$.

Rolf Harren Approx. the Orthogonal Knapsack Problem for Hypercubes

Cutting Problems

All packing problems can be seen as cutting problems, e.g., cutting textile or wood

Transportation Industry

- Arranging container on a ship
- Arranging items inside a container

ヘロト ヘアト ヘビト ヘビト

1

Cutting Problems

All packing problems can be seen as cutting problems, e.g., cutting textile or wood

Transportation Industry

- Arranging container on a ship
- Arranging items inside a container

ヘロト 人間 ト ヘヨト ヘヨト

Advertisement Placement

- Arranging ads in a newspaper
- Arranging ads on a flash page

Scheduling

- Bounded running time on a computer with a grid layout for the processors
- Tasks need a fixed running time on a rectangular grid of processors

Advertisement Placement

- Arranging ads in a newspaper
- Arranging ads on a flash page

Scheduling

- Bounded running time on a computer with a grid layout for the processors
- Tasks need a fixed running time on a rectangular grid of processors

ヘロト 人間 ト ヘヨト ヘヨト

æ

Outline

Preparation

2 Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing Generalization
 - Generalization

Summary

< 🗇 🕨

- 신문 () - 신문

NFDH

NEXT-FIT-DECREASING-HEIGHT (NFDH)

is a very efficient layer based packing algorithm for small items

Lemma

For small items $a_i \leq \delta$, the unfilled volume is bounded by δd

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Gaps in a Packing

Lemma

Given a packing P of m squares we can partition the free space into at most 3m rectangles

At least one item in P has to be aligned to the bottom of the bin

< < >> < <</>

ъ

Shifting Technique

_emma

For small items $a_i \leq \delta$ it is possible to free a given line L by shifting the items into a gap losing not more than $O(\delta)p(I)$ of the profit.

Shifting Technique

Lemma

For small items $a_i \leq \delta$ it is possible to free a given line L by shifting the items into a gap losing not more than $O(\delta)p(I)$ of the profit.

イロト イヨト イヨト イ

ъ

Rectangle Packing with Large Resources

If the bin is much bigger than the items we can derive a good approximation ratio

Lemma

There is an approximation algorithm for RECTANGLE PACKING into a bin B = (a, b) where a = 1 and $b \ge \frac{1}{\epsilon^4}$ with approximation ratio $(1 + \epsilon)$

Idea:

- Bin has strip-like shape
- Pack a selection of items with the AFPTAS for STRIP PACKING and apply a shifting technique to the overhang

Rectangle Packing with Large Resources

If the bin is much bigger than the items we can derive a good approximation ratio

Lemma

There is an approximation algorithm for RECTANGLE PACKING into a bin B = (a, b) where a = 1 and $b \ge \frac{1}{\epsilon^4}$ with approximation ratio $(1 + \epsilon)$

Idea:

- Bin has strip-like shape
- Pack a selection of items with the AFPTAS for STRIP PACKING and apply a shifting technique to the overhang

Outline

- Problem
- Preparation

Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing
 - Generalization

Summary

▲ □ ▶ ▲ □ ▶ ▲

3

Outline

Introduction

- Problem
- Preparation

2 Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing
 - Generalization

4 Summary

・ 同 ト ・ ヨ ト ・ ヨ

A little bit technical...

Separation

• Let
$$r = \lceil \frac{1}{\epsilon} \rceil$$
 and $\alpha_0 = \epsilon, \alpha_{i+1} = \alpha_i^4 \epsilon$

• Divide (unknown) optimal solution Iopt

•
$$M_i = \{ \mathbf{s} \in I_{opt} : \mathbf{s} \in [\alpha_{i+1}, \alpha_i] \}$$
 for $1 \le i \le r$

•
$$\Rightarrow \exists i^* \in \{1, \ldots, r\}$$
 with $p(M_{i^*}) \leq \epsilon \cdot p(I_{opt})$

Large, medium and small items

•
$$L_{opt} := \{s \in I_{opt} : s \ge \alpha_{i^*}\}$$

•
$$M := M_{i^*}$$

•
$$S := \{s \in I : s < \alpha_{i^*+1}\}$$

A little bit technical...

Separation

• Let
$$r = \lceil \frac{1}{\epsilon} \rceil$$
 and $\alpha_0 = \epsilon, \alpha_{i+1} = \alpha_i^4 \epsilon$

• Divide (unknown) optimal solution Iopt

•
$$M_i = \{ \mathbf{s} \in I_{opt} : \mathbf{s} \in [\alpha_{i+1}, \alpha_i] \}$$
 for $1 \le i \le r$

•
$$\Rightarrow \exists i^* \in \{1, \ldots, r\}$$
 with $p(M_{i^*}) \leq \epsilon \cdot p(I_{opt})$

Large, medium and small items

•
$$L_{opt} := \{ s \in I_{opt} : s \ge \alpha_{i^*} \}$$

•
$$M := M_{i^*}$$

•
$$S := \{s \in I : s < \alpha_{i^*+1}\}$$

イロト イポト イヨト イヨト

э

A little bit technical...

Separation

• Let
$$r = \lceil \frac{1}{\epsilon} \rceil$$
 and $\alpha_0 = \epsilon, \alpha_{i+1} = \alpha_i^4 \epsilon$

- Divide (unknown) optimal solution Iopt
- $M_i = \{ \mathbf{s} \in I_{opt} : \mathbf{s} \in [\alpha_{i+1}, \alpha_i] \}$ for $1 \le i \le r$
- $\Rightarrow \exists i^* \in \{1, \ldots, r\}$ with $p(M_{i^*}) \leq \epsilon \cdot p(I_{opt})$

Large, medium and small items

•
$$L_{opt} := \{ s \in I_{opt} : s \ge \alpha_{i^*} \}$$

•
$$M := M_{i^*}$$

•
$$S := \{s \in I : s < \alpha_{i^*+1}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A little bit technical...

Separation

• Let
$$r = \lceil \frac{1}{\epsilon} \rceil$$
 and $\alpha_0 = \epsilon, \alpha_{i+1} = \alpha_i^4 \epsilon$

• Divide (unknown) optimal solution Iopt

•
$$M_i = \{ s \in I_{opt} : s \in [\alpha_{i+1}, \alpha_i] \}$$
 for $1 \le i \le r$

• $\Rightarrow \exists i^* \in \{1, \ldots, r\}$ with $p(M_{i^*}) \leq \epsilon \cdot p(I_{opt})$

Large, medium and small items

•
$$L_{opt} := \{ s \in I_{opt} : s \ge \alpha_{i^*} \}$$

•
$$M := M_{i^*}$$

•
$$S := \{s \in I : s < \alpha_{i^*+1}\}$$

イロト 不得 とくほと くほとう

3

A little bit technical...

Separation

• Let
$$r = \lceil \frac{1}{\epsilon} \rceil$$
 and $\alpha_0 = \epsilon, \alpha_{i+1} = \alpha_i^4 \epsilon$

• Divide (unknown) optimal solution Iopt

•
$$M_i = \{ s \in I_{opt} : s \in [\alpha_{i+1}, \alpha_i] \}$$
 for $1 \le i \le r$

•
$$\Rightarrow \exists i^* \in \{1, \ldots, r\}$$
 with $p(M_{i^*}) \leq \epsilon \cdot p(I_{opt})$

Large, medium and small items

•
$$L_{opt} := \{ s \in I_{opt} : s \ge \alpha_{i^*} \}$$

•
$$M := M_{i^*}$$

•
$$S := \{s \in I : s < \alpha_{i^*+1}\}$$

イロト イポト イヨト イヨト

ъ

A little bit technical...

Separation

• Let
$$r = \lceil \frac{1}{\epsilon} \rceil$$
 and $\alpha_0 = \epsilon, \alpha_{i+1} = \alpha_i^4 \epsilon$

• Divide (unknown) optimal solution Iopt

•
$$M_i = \{ s \in I_{opt} : s \in [\alpha_{i+1}, \alpha_i] \}$$
 for $1 \le i \le r$

•
$$\Rightarrow \exists i^* \in \{1, \ldots, r\}$$
 with $p(M_{i^*}) \leq \epsilon \cdot p(I_{opt})$

Large, medium and small items

•
$$L_{opt} := \{ \mathbf{s} \in I_{opt} : \mathbf{s} \ge \alpha_{i^*} \}$$

•
$$M := M_{i^*}$$

•
$$S := \{s \in I : s < \alpha_{i^*+1}\}$$

イロト イポト イヨト イヨト

э

In a nutshell

Large items are large (i.e., $\geq \alpha_{i^*}$)

Small items are small (i.e., $< \alpha_{i^*+1}$)

Medium items are unimportant (i.e., $p(M) \le \epsilon \cdot OPT(I)$).

In a nutshell

Large items are large (i.e., $\geq \alpha_{i^*}$)

Small items are small (i.e., $< \alpha_{i^*+1}$)

Medium items are unimportant (i.e., $p(M) \le \epsilon \cdot OPT(I)$).

イロト イポト イヨト イヨト

1

In a nutshell

Large items are large (i.e., $\geq \alpha_{i^*}$)

Small items are small (i.e., $< \alpha_{i^*+1}$)

Medium items are unimportant (i.e., $p(M) \le \epsilon \cdot OPT(I)$).

イロト イポト イヨト イヨト

э.

Outline

Introduction

- Problem
- Preparation

2

Square Packing

Separation into Large, Medium and Small Items

Packing the Large Items Optimally

- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing
 - Generalization

4 Summary

< 🗇 🕨

- 신문 () - 신문

Enumeration

Enumeration

All relevant values are constant:

 r, α_i and $i^* \in \{1, \ldots, r\}$

• at most $\frac{1}{\alpha_{r*}^2}$ large items fit into the bin (volume argument)

• try all values for i^* and all possible selection of $\leq \frac{1}{\alpha_{i^*}^2}$ large items

we assume *i** and an optimal packing of the large items are known

Enumeration

Enumeration

All relevant values are constant:

$$r, \alpha_i$$
 and $i^* \in \{1, \ldots, r\}$

- at most $\frac{1}{\alpha_{**}^2}$ large items fit into the bin (volume argument)
- try all values for *i*^{*} and all possible selection of ≤ ¹/_{α²_{j*}} large items

we assume *i** and an optimal packing of the large items are known
Enumeration

Enumeration

All relevant values are constant:

$$r, \alpha_i$$
 and $i^* \in \{1, \ldots, r\}$

- at most $\frac{1}{\alpha_{i*}^2}$ large items fit into the bin (volume argument)
- try all values for i^* and all possible selection of $\leq \frac{1}{\alpha_{i^*}^2}$ large items

we assume *i** and an optimal packing of the large items are known

Enumeration

Enumeration

All relevant values are constant:

$$r, \alpha_i$$
 and $i^* \in \{1, \ldots, r\}$

- at most $\frac{1}{\alpha_{i*}^2}$ large items fit into the bin (volume argument)
- try all values for i^* and all possible selection of $\leq \frac{1}{\alpha_{i^*}^2}$ large items

we assume i^* and an optimal packing of the large items are known

ヘロト ヘアト ヘビト ヘビト

Unfilled Volume

At most 3*m* gaps Unfilled volume per gap $\leq 2\delta$

< < >> < </>

(< ∃) < ∃)</p>

Unfilled Volume

At most 3m gaps Unfilled volume per gap $\leq 2\delta$

< 🗇

∃ ► < ∃ ►</p>

Unfilled Volume

Adding small items with NEXT-FIT-DECREASING-HEIGHT

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Problem
- Preparation

2

Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally

Adding the Small Items

- Putting Everything Together
- 3 Hypercube Packing
 - Generalization

4 Summary

・ 同 ト ・ ヨ ト ・ ヨ

3 Methods

- Enough remaining space
- Several large items
- Only one very large item

Enough Remaining Space $Vol(L_{opt}) \leq 1 - \alpha_{i^*}$

Enough Remaining Space $Vol(L_{opt}) \leq 1 - \alpha_{i^*}$

Rolf Harren Approx. the Orthogonal Knapsack Problem for Hypercubes

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

Enough Remaining Space $Vol(L_{opt}) \leq 1 - \alpha_{i^*}$

Several Large Items

Rolf Harren Approx. the Orthogonal Knapsack Problem for Hypercubes

Separation Large Items Small Items Everything

Several Large Items

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Several Large Items

イロト イポト イヨト イヨト

= 990

Use RECTANGLE PACKING WITH LARGE RESOURCES for the free space

 $p(L_{opt} \cup S') \ge (1 - O(\epsilon))OPT(I)$

イロト イポト イヨト イヨト

ъ

Use RECTANGLE PACKING WITH LARGE RESOURCES for the free space

$$p(L_{opt} \cup S') \ge (1 - O(\epsilon))OPT(I)$$

3

э

Outline

Introduction

- Problem
- Preparation

2

Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together

3 Hypercube Packing

Generalization

Summary

・ 同 ト ・ ヨ ト ・ ヨ

Introduction Square Packing Hypercube Packing Summary Separation Large Items Small Items Everything

Putting Everything Together

We derived methods for

- Case 1 Enough remaining space
- Case 2 Several large items
- Case 3 Only one very large item
- $(1 O(\epsilon))OPT(I)$ $(\frac{k}{k+1} O(\epsilon))OPT(I)$ $(1 O(\epsilon))OPT(I)$

We show that k < 4 can be reduced to Case 1 or Case 3

Main Idea

Three similarly large squares cannot fill a square bin almost completely

イロト イポト イヨト イヨト

ъ

Outline

- Problem
- Preparation

2 Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together

Hypercube PackingGeneralization

Summary

< 🗇 🕨

- 신문 () 신문

Methods for Hypercube Packing

Direct adoption of 2-dim methods

With suitable separation parameters Case 1 Enough remaining space Case 2 Several large items work as well

More work needed

For Case 3 we need an approximation algorithm for ORTHOGONAL KNAPSACK PACKING WITH LARGE RESOURCES FOR HYPERCUBES with ratio $(1 + \epsilon)$ if the bin is big enough

Methods for Hypercube Packing

Direct adoption of 2-dim methods

With suitable separation parameters Case 1 Enough remaining space Case 2 Several large items work as well

More work needed

For Case 3 we need an approximation algorithm for ORTHOGONAL KNAPSACK PACKING WITH LARGE RESOURCES FOR HYPERCUBES with ratio $(1 + \epsilon)$ if the bin is big enough

< □ > < 同 > < 三 > <

Generalization

Wellstructured Packing

amax big enough

∃ > < ∃ >

э

Construction of a Wellstructured Packing

amax big enough

프 🕨 🗆 프

Generalization

Packing the Small Items

Applying the algorithm for ORTHOGONAL KNAPSACK PACKING WITH LARGE RESOURCES FOR HYPERCUBES

Rolf Harren Approx. the Orthogonal Knapsack Problem for Hypercubes

< □ > < 🗇 >

ъ

Improving Approximation Ratio

Seven similarly large cubes cannot fill a cube bin almost completely

In general

For d-dim Hypercube Packing, we can reduce Case 2 with $k < 2^d$ to Case 1 or Case 3

Improving Approximation Ratio

Seven similarly large cubes cannot fill a cube bin almost completely

In general

For d-dim Hypercube Packing, we can reduce Case 2 with $k < 2^d$ to Case 1 or Case 3

Outline

- Problem
- Preparation

2 Square Packing

- Separation into Large, Medium and Small Items
- Packing the Large Items Optimally
- Adding the Small Items
- Putting Everything Together
- 3 Hypercube Packing
 - Generalization

4 Summary

< 🗇 🕨

- 신문 () - 신문

Summary

Result

We developed an approximation algorithm with approximation ratio $1 + \frac{1}{2^d} + \epsilon$ for d-dimensional ORTHOGONAL KNAPSACK PACKING FOR HYPERCUBES

Main Steps

- Separation of large, medium and small items
- Packing the large items
- Adding the small items
- "Three similarly large squares cannot fill a square bin almost completely"

Summary

Result

We developed an approximation algorithm with approximation ratio $1 + \frac{1}{2^d} + \epsilon$ for d-dimensional ORTHOGONAL KNAPSACK PACKING FOR HYPERCUBES

Main Steps

- Separation of large, medium and small items
- Packing the large items
- Adding the small items
- "Three similarly large squares cannot fill a square bin almost completely"

Additional notes

Practical application of this algorithm

The running time is dominated by huge enumerations, making the algorithm practically unusable.

Asymptotic behavior

The structure of the problem does not allow asymptotic algorithms. Neither in the size of the input, nor in the value of an optimal solution.

Additional notes

Practical application of this algorithm

The running time is dominated by huge enumerations, making the algorithm practically unusable.

Asymptotic behavior

The structure of the problem does not allow asymptotic algorithms. Neither in the size of the input, nor in the value of an optimal solution.

The End

Thanks for your attention

Rolf Harren Approx. the Orthogonal Knapsack Problem for Hypercubes

イロン イロン イヨン イヨン