DFM-aware Detail Routing Alexey Starkov

- Detail routing
- Lithography hot-spots
- DFM
- Rule- and model-based DFY criteria estimation
- Integration into routing flow
- Algorithmic approaches

Detail Routing

Goal is to determine the exact shape of the wires

Final Detail Routing Criteria

- Main criteria
 - 100% routability
 - DRC clean design
 - Timing/Power enhancement
- Auxiliary criteria
 - Optical proximity failure minimization
 - Via failure minimization
 - Crosstalk avoidance
 - Planarity enhancement
 - IR-drop minimization
 - EM minimization
 - Minimization of failures due to random defects

Detail Routing Criteria During Run

- Wire length minimization
- Via number minimization
- ???
- All other criteria are post-optimizations
- This is the ad-hoc situation due to gradually introduced effects
- But now...

Increasing Role of "Auxiliary" Criteria Impact on yield 00 00 OC 00 Main Main Main criteria criteria criteria Auxiliarv 60 criteria criteria 250 130 65 nm

- Role of the auxiliary criteria increases with feature size decrease.
- Below 65 nm neglecting these criteria results in yield so small, that chip production becomes economically inefficient.

- Detail routing
- Lithography hot-spots
- DFM
- Rule- and model-based DFY criteria estimation
- Integration into routing flow
- Algorithmic approaches

Lithography hot-spots

- Areas prone to defects due to the production issues
- Our goal is to minimize the area of the hot-spots

Reason for Lithography hot-spots

- Geometrical optics is no longer valid.
- Simulation is needed to determine actual shapes.

- Edge placement error (EPE) is a simple estimation.
- EPE guided router can produce correct-by-construct designs.
- Still post-optimization.

- Detail routing
- Lithography hot-spots
- DFM
- Rule- and model-based DFY criteria estimation
- Integration into routing flow
- Algorithmic approaches

Design for Manufacturability

- The set of measures whose primary focus is to negate production effects.
- DFT Design for Test.
- We'll talk Physical DFY Design for Yield.

Design for Yield

- Rule-based
 - Ad-hoc technique
 - Is the result of the gradual feature size reduction
 - Current "mainstream"
 - Uses distance based Design Rule-like recommendations
- Model-based
 - Was shunned for a long time due to its complexity
 - The "source" of rules
 - Provides true estimation of the production effects
 - Models production process with more or less accuracy

Rule-Based DFY

- + Well established
- + Integrated into contemporary EDAs
- + Simple metrics (distance-based)
- Difficult formalization
- Huge amount of rules
- No smooth trade-off between yield and the other parameters (Power, Timing, SI)
- Rules are checked at the late stages

Model-Based DFY

- + Offers a smooth trade-off between yield and the other parameters (Power, Timing, SI)
- + Closer to optimal solution
- + Models can be simpler than rules
- + Used at the synthesis stage, hence little to no post-processing required
- Models can be very sophisticated
- Has no native support in modern EDAs

DFY Rule based Model based

- Design rule is simple, standardized and well known to everyone.
- Model of technological process is very sophisticated and there's no naive way to solve it.

- With feature size decrease, number and complexity of rules are increasing, while model changes slightly.
- Also you can always sacrifice accuracy and lower computational complexity, while you can not decrease number of rules.

- Detail routing
- Lithography hot-spots
- DFM
- Rule- and model-based DFY criteria estimation
- Integration into routing flow
- Algorithmic approaches

How Do Criteria Can Be Estimated?

• Silicon simulation

Very complicated, but very accurate way. For the modern VLSI this approach is almost unacceptable.

• Simplified models

These include less accurate models for aerial and litho-image, metal density, variational and systematic edge placement error.

• Distance-based hot-spot reduction

The simplest method, very similar to rules. It overestimates hot-spot area, but is very fast.

- Detail routing
- Lithography hot-spots
- DFM
- Rule- and model-based DFY criteria estimation
- Integration into routing flow
- Algorithmic approaches

Design-specific thickness variation.

Jogs introduce additional hot-spots.

Implementation

- CMP awareness/Density uniformity
 - Wire spreading improves planarity, since the polishing process becomes more isotropic.
 - Dummy fill is the necessary modern technique to improve planarity, so it must be taken into account.
- Jog minimization
 - Wire straightening (L-shaped wires) reduces lithography errors, since simpler forms tends to be less distorted.

Via-redundancy aware routing

Short and open defects due to random defects

Implementation

- Via failure
 - Via redundancy serves as "back-up system" for failed vias. Although for deeper submicron redundant vias increase wire capacitance and introduce noise and signal reflection.
 - Via metal enclosure serves as a guard from layer misalignment.
 - Overall via number minimization is of course a good thing to do.
- Random defects
 - Wire spreading lowers probability of short between neighboring wires.
 - Wire reordering can reduce critical area of short, interleaving long and short wires.
 - Wire width/spacing regulation lowers both probability of short and open.

- Detail routing
- Lithography hot-spots
- DFM
- Rule- and model-based DFY criteria estimation
- Integration into routing flow
- Algorithmic approaches

Approaches – Maze Routing

Increase paths' cost for:

- Proximity to each other for lithography improvement, wire density annealing and decreasing random defects.
- Via proximity for lithography improvements and increasing abilities to place redundant vias and metal enclosure.
- Bends for improve lithography image.

Approaches - Heuristics

- Maximize density uniformity for improving planarity.
- Prefer L- and I-shapes to Z-shapes for improving lithography image.
- Mix long/short segments for decrease random defect influence.

Approaches – Other

• Rip-up and reroute

 Introduce new obstacles in lithography "hot-spots", provides wide range of areaminimization based improvements.

• ILP/NLP

 Find optimal solution for wire width/spacing and segment order to minimize "hot-spot" and random defect sensitive area.

Conclusions

- Detail routing stage can optimize yield.
- Doing this as a post-optimization reduces flexibility and quality of solution.
- Current methods should be adapted.
- While adapting the existing methods is possible, the better solution is to seek for a new methods.
- Goal is to synthesize maximizing yield routing pattern during one iteration.