

Reliability Implications of Bias Temperature Instability in Digital ICs

Renju R Thomas Technische Universität München

Source :

Reliability Implications of Bias Temperature Instability in Digital ICs, IEEE Design & Test of Computers, Nov/Dec 2009, Sang Phill Park, Kaushik Roy, Kunhyuk Kang

Agenda

- Introduction
- □ NBTI mechanism
- □ NBTI in random logic circuits
- □ NBTI in 6T SRAM cell
- □ Reliability-aware circuit design
- Conclusion

Introduction

□ SUCCESSFUL DESIGN of Digital ICs

- Silicon area, speed, testability, design effort, and power dissipation.
- □ Is the physical and electrical properties of a transistor deterministic and hence predictable over its life time ?
- □ Negative Bias Temperature Instability (NBTI)
 - Negative bias, high temperature, time.
 - PMOS specific transistor aging effect.
 - PMOS biased in inversion.
 - Holes near Si/SiO₂ interface.

Is NBTI a major reliability concern ?

□ Major reliability challenge in nanoscale CMOS technology.

- Scaling ultrathin oxide devices and increased electric field.
- Increased chip operating temperature.
- □ Results in threshold voltage increase.
- Degrades mobility, drain current, transconductance.
- □ Introduce extra delay in circuit over its life time.
 - Circuit/system may fail to meet its timing specifications.
 - Max frequency of operation reduces.
 - Reduced life time.
 - Introduce safety concerns in a critical embedded system.

Some NBTI facts ..

- □ Not yet fully understood !
- \Box 25-30 % increase in V_{TH} over 10 years.
- Wide variation depending on specific topology and operating condition.
- Delay between the release of stress and measurement is very important.

NBTI Mechanism

- □ Reaction diffusion (RD) model.
- □ Combined effect of electric field, temperature and holes.
- Interaction of inversion layer holes with hydrogen-passivated Si atoms.

$$Si_3 \equiv SiH$$

 \Box Breaking of Si-H bonds at the SiO₂/Si substrate.

Reaction Diffusion model

- Holes from the inversion layer under sufficient temperature can break Si-H bonds.
 - Results in dangling bonds or interface traps.
- The H₂ diffuses away from the interface into the oxide or poly-Si gate.
- \Box H₂ diffuse back to the interface when the stress voltage is removed.

$$Si_3 \equiv SiH + H^+ \leftrightarrow Si_3 \equiv Si \bullet + H_2$$

RD based V_{TH} model

 $\hfill\square$ Interface traps increase the device V_{TH} .

$$\Delta V_{TH} \approx \frac{q \cdot N_{it}(t)}{C_{ox}}$$
$$\approx f_{AC}(S_p) \cdot K_{DC} \cdot t^{\mathsf{n}}$$

- □ N_{it} is the density of interfacial traps
- K_{DC} is a technology, VDD, device geometry, oxide nitrogen concentration and temperature dependent constant.
- Sp is signal probability, represents the fraction of time when input is high.

Impact of DC and AC stress on $V_{\rm TH}$

DC stress

- Power law, $\Delta V_{TH} \sim t^n$
- On-the fly measurements : n ~ 1/6.
- Measurements with delay : n ~ 1/4.
- □ AC stress
 - Stress phase and Recovery phase.
 - n ~ 1/6
 - Degradation scaled by a signal probability dependent function.

NBTI degradation under AC and DC stress

NBTI in random logic circuits

- Delay degradation.
- Increased V_{TH} reduces drive current and thus increases individual gate delays.
- In a timing path with rising and falling transitions, the impact of NBTI is less.

6T SRAM cell

- □ Bit stored in cross coupled inverters.
- Two stable states 0 and 1.
- □ In standby, cross coupled inverters reinforce each other.
- Two access transistors.
- Read and write can be done by proper assertion of BL and WL.
 - BL Bit Line
 - BL_B not (Bit Line)
 - WL Word Line

NBTI in 6T SRAM cell

- Degradation to PMOS.
- Local mismatch among Transistors can lead to failures.
- □ NBTI degradation can severely damage SRAM read stability.
- □ Static Noise Margin (SNM) of an SRAM cell decreases.
- □ Read failure probability increases.

Statistical variation in NBTI

- Transistor mismatch originates from random dopant fluctuation (RDF) as V_{TH} variation.
- □ NBTI combined with random process variation has greater effect.
- With aggressive scaling of device dimensions, breaking and repassivation of Si-H bonds in the channel experience stochastic fluctuations.

$$\sigma_{V\rm TH} = \sqrt{\sigma_{\rm RDF}^2 + \sigma_{\rm NBTI}^2(t)}$$

• σV_{TH} is the total V_{TH} variation after time t.

Reliability aware Circuit Design

- Delay guard banding.
- □ Sizing technique
 - WC sizing method. (Worst case)
 - Optimal sizing Less area over head.
- □ Synthesis
 - Worst case NBTI synthesis.
 - Signal probability based synthesis (SP).
- □ Stand-by VDD scaling depends on standby time of memory.
- □ On chip sensors Area and power over head.

Time

Conclusion

- Successful IC design is a complicated optimization problem and transistor reliability could be an even more severe problem in future technology nodes.
- With Hf based promising high-k dielectrics, PBTI also comes out as a major reliability challenge apart from NBTI and other reliability concerns like Hot Carrier Injection.
- Reliability-aware design of digital circuits and memories is essential for future nanotechnologies to ensure robust and stable products.