IC Synthesis and Optimization Challenges and Solutions

Shushanik Karapetyan 1st year PhD Student Synopsys Armenia Educational Department, State Engineering University of Armenia

> Moscow March 23, 2011

Overview

- Synthesis and Optimization Challenges and Solutions on the example of 90nm EDK
- Overview of 90nm EDK content

90nm EDK: Solution for Challenges

- Anticipated for the use of educational purposes
- Free from intellectual property restrictions EDK
- Foreseen to support
 - Advanced design methodologies
 - Design complexity challenges
 - Design For Manufacturing (DFM)
 - Capabilities of SYNOPSYS tools
- Anticipated for designing complex ICs (processors)

IC Design Challenges

SYNOPSYS[®]

Routing Congestion

Routing resources < Routing Requirements \rightarrow Congestion

Requires Congestion-Aware Placement

Congestion Map

SYNOPSYS[®]

Congestion in Standard Cell Placement regions

Congestion Caused by Poor Pin Acessibility

Sources of Congestion and Solutions

- High placement density
 - Too much routing required on small area
 - Solution: less dense placement
- Bad standard cell and IP pin access
 - Bad pin placement causes congestion
 - Solution:
 - Increase IP pin access
 - Increase standard cell pin access

Routing Resource

Standard cell routability improvement

If pins are placed on same track additional M2 routing resources spent

SYNOPSYS[®]

Routing can be accomplished using only M1

90nm EDK: Standard Cell Physical Design

IP Pin Access Improvement

90nm EDK: Memory Cell

SYNOPSYS[®]

Advanced I/O Cell Placement

Wire Bond

- Most widespread method
- IC is connected with package pins with thin wires

Flip-Chip

SYNOPSYS[®]

- Modern method of the I/O connection
- IC is connected with package using solder balls

Wire Bond Placement

Flip Chip Placement

SYNOPSYS[®]

Copyright © 2011 Synopsys, Inc.

I/O Cell Physical Structures

Flip-Chip Routed Example

Metal Density

- Metal Density
 - Min density
 - **~**30%
 - Dummy metal structures required to add metal
 - Max density
 - **~**80%
 - Wide wires should be converted into parallel lines

Dummy Metal Fill Utility

- For SAED 90nm EDK density fill utility was created (based on Synopsys IC Validator)
 - Automatically fills low density spaces with dummy "tiles"
 - Brings design to around 53% density (when min is 30% and max is 80%)

Metal Fill Extraction Problem

- Extracting metal fill objects is runtime and memory consuming
- Approximation of capacitive effects can be made
- StarRC provides Metal fill estimation capability in interconnect technology file (ITF).

Metal Fill Estimation

- Metall fill estimation ITF was created
- Evaluation shows 13% difference in between estimated and real results

SYNOPSYS[®]

Antenna Effect

Antenna Fixing

- Two solutions: bridging and node diodes
 - Bridging attaches a higher layer intermediary
 - Add a piece of drainage diffusion to leak away charge

SYNOPSYS°

Antenna Fixing: Flow and Required Data

- Contemporary automated physical synthesis tools (IC Compiler, for example) are able to automatically fix antenna violations
- Additional technology and library data should be provided

SYNUPSys[®]

Electromigration Effects

Metal void -> open circuit

SYNOPSYS[®]

Metal hillock -> short circuit

Electromigration Rules

Current density

- Electromigration is not a function of current, but a function of current density
- Larger current on narrower metal width or smaller via area speeds up electromigration effect

• Temperature

Electromigration is accelerated by elevated temperature

Electromigration Fixing

 Electromigration(EM) Rule File in Advanced Library Format (ALF) format was created for 90nm EDK

Electromigration Fixing Results

SAED 90nm Educational Design Kit (EDK)

90nm EDK Content

Digital Standard Cell Library

- 340 cells, operating at 300 MHz.
- Special cells for low power design.
- Standard, Low and High V_{th} versions

I/O Standard Cell Library

 50 typical I/O cells, 1.2V/2.5V operation, Wire-bond and Flip-Chip versions.

I/O Special Cell Library

• SSTL, HSTL, PCI cells. Implemented according to standards.

Set of Memories

• 35 static RAMs (SRAMs). Dual and single port SRAMs with the same architecture and different size.

Phase Locked Loop

• 3 operating modes: normal, external feedback and bypass.

References to different designs

OpenSPARC T1, PowerPC 405, Leon3, ChipTop, Orca.

Supports

Modern Low Power design

Wire-bond/Flip-chip I/O

I/O standards (PCI, etc.)

OpenSPARC T1 processor

SYNOPSYS°

90nm EDK: Technology Kit

90nm EDK: Digital Standard Cell Library

Digital Standard Cell Library (DSCL)

Aimed at optimizing the main characteristics of designed lcs

Contains 340 cells, cell list compiled based on the requirements for educational designs

Typical combinational and sequential logic cells for different drive strengths

Typical combinational and sequential

Inverters/Buffers	Logic Gates	Flip-Flops (regular+scan)
Latches	Delay Lines	Physical (Antenna diode)

Retention **Isolation Cells** Level Shifters

Buffers

Special cells for different styles LPD

Always-on **Clock** gating

Flip-Flops

Power Gating

Provides the support of IC design with different core voltages to minimize dynamic and leakage power.

Operating Conditions and Drive Strengths

 $3 \mathrm{x} \mathrm{C}_{\mathrm{sl}}$

 $4 \mathrm{x} \mathrm{C}_{\mathrm{sl}}$

		Г	_					
	Operating			l co	nditions			
		Parameter		Min	Тур	Max	Units	
	Power Sup	ply (VDD) range		0.7	1.2	1.32	V	
	Operating 7	Operating Temperature range		-40	+25	+125	°C	
	Operating F	Operating Frequency (F)		-	300	-	MHz	
	Drive stren			igths				
Drive S	Strength	ength Cell Load		Drive Strength			Cell Load	
>	×0	0.5x C _{sl}		X8			8x C _{sl}	
>	X1	1x C _{sl}		X12			12x C _{sl}	
)	X2	2x C _{sl}		X16			16x C _{sl}	

Х3

X4

X24

X32

24x C_{sl}

32x C_{sl}

Characterization Corners

Corner Name	Process (NMOS proc. – PMOS proc.)	Temperature (T)	Power Supply (V)	Notes	
TTNT1p20v	Typical - Typical	25	1.2	Typical corner	
SSHT1p08v	Slow - Slow	125	1.08	Slow corner	
FFLT1p32v	Fast - Fast	-40	1.32	Fast corner	
FFHT1p32v	Fast - Fast	125	1.32	High leakage corner	
SSLT1p32v	Slow - Slow	-40	1.32	Low temperature	
SSLT1p08v	Slow - Slow	-40	1.08	corners	
Low Voltage Operating Conditions					
TTNT0p80v	Typical - Typical	25	0.80	Typical corner	
SSHT0p70v	Slow - Slow	125	0.70	Slow corner	
FFLT0p90v	Fast - Fast	-40	0.90	Fast corner	
FFHT0p90v	Fast - Fast	125	0.90	High leakage corner	
SSLT0p90v	Slow - Slow	-40	0.90	Low temperature	
SSLT0p70v	Slow - Slow	-40	0.70	corners	

90nm EDK: I/O Cell Library

I/O Standard Cell Library (IOSCL)

Uses 90nm EDK 1P9M 1.2V/2.5V design rules

Includes typical I/O cells which are necessary for IC design

Cell list compiled based on the analysis of different educational designs

Contains 50 cells

90nm EDK: Phase Locked Loop

90nm EDK: Set of Memories

SYNOPSYS[®]

Word (bit)	Word s	Cell Name		
4	16	SRAM4x16		
	32	SRAM4x32		
4	64	SRAM4x64		
	128	SRAM4x128		
	16	SRAM8x16		
8	32	SRAM8x32		
0	64	SRAM8x64		
	128	SRAM8x128		
	16	SRAM16x16		
16	32	SRAM16x32		
10	64	SRAM16x64		
	128	SRAM16x128		
	16	SRAM32x16		
32	32	SRAM32x32		
32	64	SRAM32x64		
	128	SRAM32x128		

Copyright © 2011 Synopsys, Inc.

Deliverables

Ν	Туре	Description
1	.doc, pdf	Databook / User guide
3	.db, .lib	Logic Models
4	.V	Verilog simulation/power models
5	.vhd	VHDL / Vital simulation models
6	.cdl, .sp	LVS, HSPICE netlists
7	.spi	Extracted C or/and RC netlists for different corners
8	.gds	GDSII layout views
9	.lef	LEF files
10	.FRAM, .CEL	Fram views, layout views and runset files
11	.clf	Antenna data

Conclusion

- Technological progress causes many IC Design challenges
- For number of challenges solutions were implemented in SAED 90nm EDK
- SAED 90nm EDK together with Synopsys EDA tools make it possible to develop complex designs while addressing these challenges

