Numerical Modeling of Ultrasonic Data for Elastography

Elena Nasonova

National Research University Moscow Institute of Electronic Technology

MB-JASS 2011

Supervisor: Prof. Dr. Rychagov

1. Introduction

Elastography: definition Ultrasonic signals analysis Block-diagram of the elastography method

- 2. Transducer Simulation
- 3. Simulation of Ultrasonic Data
- 4. Deformation Modeling
- 5. Conclusion

1.1 Elastography: Definition

• *Elastography* is a non-invasive imaging technique for measurement and visualization of the mechanical properties of biological tissues

Fig. 1. Stages of producing elastogram

1.2 Ultrasonic Signals Analysis

Fig. 2. Algorithm of strain estimation from RF signals

1.3 Block Diagram of the Elastography Method

Overview

1. Introduction

2. Transducer Simulation

Modeling of linear array Optimization of parameters Comparison with experiment

- 3. Simulation of Ultrasonic Data
- 4. Deformation Modeling
- 5. Conclusion

2.1 Modeling of Linear Array

2.2 Optimization of Parameters

Transducer frequency

Aperture size

2.3 Comparison of Simulated and Experimental Pressure Field

// Ultrasonics. - 2009. - Vol. 49 - P. 404-412

Overview

- 1. Introduction
- 2. Transducer Simulation

3. Simulation of Ultrasonic Data

Algorithm of Image Simulation Data Storage

- 4. Deformation Modeling
- 5. Conclusion

3.1 Algorithm of Image Simulation

Simulated A-lines

3.2 Data Storage

DICOM format

- Accurate identification
- and easy access to large volume of simulated images

4. Deformation Modeling

Mesh discretization

Deformed shape

• GUI for linear array modeling allows fine control over the key transducer parameters

 Through effective optimization of simulated transducer a satisfactory agreement with measured acoustic pressure is observed in the focal plane and far-field

• Ultrasound images can be simulated for a variety of phantoms and stored in DICOM data base for later use

• Deformed state of phantom can be modeled using FEM and corresponding RF-signals can then be used for tissue motion analysis

Thank you for your attention!