Probabilistic CMOS Technology*
Probabilistic System-on-a-Chip Architectures™*

Sebastian Schiessl

Technische Universitat Minchen

sebastian.schiessl@mytum.de

* Akgul et al., Probabilistic CMOS Technology: A Survey and Future Directions,
** Chaprakani et al., Probabilistic System-on-a-Chip Architectures

[1 MB-JASS 2009: Design Methods for Micro-
and Nanoelectronic ICs and Systems



Probabilistic CMOS Technology
Probabilistic System-on-a-Chip Design

 Motivation
 Foundational Model
« Technology of Probabilistic CMOS

« Application Scenarios
» (i) Applications that harness probabilistic behaviour
(i) Applications that can tolerate probabilistic behaviour
@ (iii) Applications which can not tolerate probabilistic behaviour

« Conclusion

[1 MB-JASS 2009: Design Methods for Micro-
and Nanoelectronic ICs and Systems



Motivation

« Scaling into the nanometer regime poses several problems
— Noise
— Parameter Variations
— Device Perturbations

« Overcoming those hurdles leads to increased power
consumption

« Devices already operate close to the thermal limit
* Rigorous testing methodology is required

> A shift in design paradigm towards probabilistic design seems
to be inevitable
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Harnessing probabilistic behaviour

Noise can also be used to perform useful computations.
Applications include:

— Bayesian Inference (BN)

— Probabilistic Cellular Automata (PCA)
— Random Neural Networks (RNN)

— Hyper Encryption (HE)

— The celebrated test for primality
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Foundational Model:
Probabilistic Switch

Input | output Input | output Input output Input output
0 0 0 1 0 0(p) | 1(1-p) 0 1(p) | 0(1-p)
1 1 1 0 1 1(p) | 0(1-p) 1 O(p) | 1(1-p)
Identity Function Complement Function Identity Function Complement Function
Input | output Input | output Input output Input output
0 0 0 1 0 O() | 1(1-p) 0 1(p) | 0(1-p)
1 0 1 1 1 0(p) | 1(1-p) 1 1(p) | 0(1-p)
Constant Function Constant Function Constant Function Constant Function
(a) (b)
(a) Deterministic Switches (b) Probabilistic Switches

[Akgul et al., p.2]
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Technological Considerations
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Lower Error Probability means significantly higher Energy
Comsumption, as E ~V_*

[Akgul et al., p.2]
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Technological Considerations

. 1 V 4
Probability of Correctness: =1—-——erfc
robability of Co p > (2&0)

with  erfc(x) f e dt

V2
—1.275—4

Using upper bound for erfc(x): p<1-0.28e 87

Switching Energy E: E=% C Vf,d

E(p,C,0)>Co(
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Technological Considerations

Law 1: Energy-probability Law: For any fixed technology
generation (which determines the capacitance ¢ = (') and
constant noise magnitude o = &, the switching energy E. .
consumed by a probabilistic switch grows with p. Furthermore,
the order of growth of Eé_& in p is asymptotically bounded

below by an exponential in p since Eéﬁ (p) = Q, (E*( 6(1))).

Law 2: Energy-noise Law: For any fixed probability p =
p and a fixed technology generation (which determines the
capacitance C' = ('), Ex 5 grows quadratically with o, since

Be (o) =, (BL (0)).

[Akgul et al.]
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» Applications that harness probabilistic behaviour

Noise can also be used to perform useful computations.
Applications include:

— Bayesian inference (BN)

— Probabilistic Cellular Automata (PCA)
— Random Neural Networks (RNN)

— Hyper Encryption (HE)

— The celebrated test for primality [Rabin 1976; Solovay
and Strassen 1977]

Key probabilistic steps (“toin cosses”) of those algorithms
are identified and built with PCMQOS technology
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Application Implemented(s) Core Probabilistic
Algorithm Scenarios Application(s) Step
Bayesian Inference SPAM Filters, Windows printer Choose a value for a
[MacKay 1992] Cognitive trouble shooting, variable from a set
applications, Hospital Patient of values based on
Battlefield Management its conditional

Planning [Pfeffer
2000]

[Beinlich et al.
1989]

probability

Random Neural

Image and pattern

Vertex cover of a

Neuron firing

Network [Gelenbe classification, graph modeled as a
1989] Optimization of Poisson process
NP-hard
problems
Probabilistic Pattern String classification Evaluating the
Cellular Automata classification [Fuks 2002] probabilistic
[Wolfram 2002] transition rule
Hyper-Encryption Security Message encryption Generation of a

[Ding and Rabin
2002]

random string and
encryption pad
generation from
this string

[Chakrapani et al.]

TUTIE
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Applications that harness probabilistic behaviour

Energy savings not only on the device level (due to
reduced operating voltage) but mainly on the application
level

— Useful for those applications that are using probabilistic
algorithms

— Reason: no more need for intensive calculation of
pseudorandom numbers

Motivation: Reduction of energy consumption and
execution time.

Quality of the probabilistic output (randomness; statistical
independence) must also be taken into account
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Probabilistic System-on-a-Chip Architectures

-
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[Chakrapani et al., p.6]
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Competitors: NON-probabilistic architectures

Probabilistic part of

Probabilistic
Algorithm
L . Probabilistic and
Deterministic Determlmstll(l: part Determlnlstlltlz part Accelerated Parts
. of Probabilistic of Probabilistic T
Algorithm . . of Probabilistic
Algorithm Algorithm Algorithm
‘ ‘ Memory ’
‘ ‘ ‘ ‘ mapped
10
Host Conventional
SA-1100 Host SA-1100 Host ) Coprocessor(s)
(SA-1100 or ASIC) Based on CMOS
(a) (b) ()

[Chakrapani et al., p.6]
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Comparison between different implementations

« Energy Performance Product:
EPP = Energy Consumption x Execution Time

« Energy performance product gain:

Ratio of the EPP of the baseline () to the EPP of the
particular implementation (I)

Energy, x Timeg

|7+ =
g Energy; x Timer
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Application Level EPP gains ' for different

applications
'z
Algorithm Min Max
BN 3 7.43
RNN 226.5 300
PCA 61 82
HE 1.12 1.12

[Chakrapani et al., p10]

Bayesian inference (BN)
*Probabilistic Cellular Automata (PCA)
Random Neural Networks (RNN)
*Hyper Encryption (HE)
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Factors influencing EPP gains

1. “Amount of opportunity”, number of probabilistic
steps in the application that use the PCMOS-
based coprocessor.

Number of probabilistic steps

P listic Flux F =
robabilistic Flux Total number of operations

(application dependent)

2. Amount of gain afforded “per unit of opportunity”
(dependent on architecture and technology)
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Analyzing EPP gains

Energyﬁ = Energydet,ﬁ —l_Energyprob,ﬁ

— CyCleSdet,host X Energycycle,host + Energyprob,ﬁ
— Cy Clesdet,host x Ener. 8Y cycle, host + F x Cy Clesdet,host X Energy flux0,p

EnergyI — CyCleSdet,host x Energycycle,host + F X CyCle‘Sdet,host x Energyﬂux,f
Cydesdet,host X Energycycle,host'

&

Amount of gain per core probabilistic Step [Chakrapani et al., p.13]:
Application | Gain Over sa-1100 | Gain Over cMos

BN 9.99 x 107 2.71 x 10°
RNN 1.25 x 106 2.32 x 104
PCA 417 x 104 7.7 x 102

1.56 x 10° 2.03 x 10°

HE
[1 MB-JASS 2009: Design Methods for Micro- 17
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Analyzing EPP gains

Energy, x Timeg

Energy; x Timers

F x Ener F x Time
B 14 gyﬂux,ﬁ v (1 4 ' flux,p
Energycyde,host Tlmecycle,host

)
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11 , I

' Variation of EPP Gain With Flux
10 |

17 Nodes

EPP Gain

10 Nodes

| ] ] l ] ] ] ]

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 o0.01
Flux

(for a Bayesian Network) [Chakrapani et al., p.14]
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Energy and Performance characteristics per
core probabilistic step

PCMOS energy-efficiency (0.4 pJ for a logical NOT)
PCMOS specialization (avoiding Dilation)

Replication factor R

— Operating frequencies of PCMOS devices are at 1MHz

— If a probabilistic algorithm needs a higher rate of
random bits, the PCMOS building block has to be
replicated

— Optimization on application level is possible

— Building blocks can't be turned off, take this into
account when considering the EPP

Communication Costs

MB-JASS 2009: Design Methods for Micro- 20
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Energy and Performance characteristics per
core probabilistic step

« Spread Factor S: number of distinct probability
parameters needed for an application.

— Problem: Every distinct probability needs a distinct
operating voltage: 1275 Ve
p<1-0.28e 50

— Optimization on application level: reducing the number
of necessary distinct probability parameters
(p=0.75, p=0.80, p=0-89)

— Optimization on architecture level: choosing a
nonspecialized implementation if the spread factor is

too high (p=0.75, p=0.80, $=0-68)

[1 MB-JASS 2009: Design Methods for Micro- 21
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Example for nonspecialized implementation

Application-Required Probability Parameters Composition Tree

0.05 [1(0.4)AND(0.5)]aND(0.5)]aND(0.5)
0.10 [(0.4)aND(0.5)]aND(0.5)
0.15 [(0.5)AND[NOT(0.4)]]AND(0.5)
0.20 (0.4)AND(0.5)

0.25 (0.5)AND(0.5)

0.30 (0.5)AND[NOT(0.4)]

0.35 [NOT[(0.5)AND[NOT(0.4)]]ANDO.5
0.40 0.40

0.45 [NOT[[(0.4)AND(0.5)]AND(0.4)]]
0.50 0.50

[Chakrapani et al., p.25]
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Example for a probabilistic step:
Probabilistic Cellular Automata

jmmm———————— Transition rule Implementation

Cells

i / Specialized PCMOS Inverters \

State | State |State

State|s « E Switch [Switch [Switch [Switch [Switch |Switch|Switch [Switch

L | | —

Buffer

s|[©2 J8L}0 1o}

;;\sm Mutipj{/
A

Next state (0 or 1) of a cell is probabilistic and
depends on its current state and the state of the
nearest two neighbors. (2°=8 distinct probabilities)
[Chakrapani et al., p.21]

| suonejusws|dw| ejni uomsuE |

J

TUTIE
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Statistic Quality (Randomness)

 1010101010101010101010101010101010
* 1110101010101010101010101010101010

« Low quality bits affect applications (weaker encryption
etc.)

* Theoretical approaches to examine the statistic quality are
not practical

« But the quality of random bits generated with PCMOS
devices has been tested with the randomness test from
NIST suite with very favorable results

[1 MB-JASS 2009: Design Methods for Micro- 24
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Applications that tolerate probabilistic behavior

Those applications allow a Trade-off between
Energy and Performance <=> Quality of the Solution

Example: Applications in Digital Signal Processing,
because they already have to do a natural trade-off
between Energy and Quality in the form of Signal-to-
Noise-Ratio (SNR)

[1 MB-JASS 2009: Design Methods for Micro-
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Applications that tolerate probabilistic behavior

,  Nominal V, operation Conventional uniform V, scaling  PCMOS non-uniform V, scaling
Vi W o
MSB 12-bit Adder |SB ’MSB 12-bit Adder |SB MSB 12-bit Adder |SB
Tl T T
outputs outputs outputs
: } ' |
i An element of a FIR filter used in H.264 image compression standard yielding an image
A g Yo g |

Normal operation Conventional voltage scaling ~ Non-Uniform voltage scaling

(a) (b) (c)
PCMOS in H.264 decoding [Akgul et al.]
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> Applications that do NOT tolerate probabilistic
behavior

* Most Approaches are based on redundancy with
reliable arbitrators

* Also: Speculative execution on faster (but less
reliable) logic elements and verification by slower
(and more reliable) logic elements

45/ 5 =9 (on unreliable logic)
5 * 9 =45 (correct)
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and Nanoelectronic ICs and Systems



Conclusion

* Modelling of probabilistic devices with regards to
probabilistic behavior and energy consumption

* Probabilistic behavior can be harnessed for some
applications with massive reduction of energy
consumption and execution time

[1 MB-JASS 2009: Design Methods for Micro- 28
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