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overview
● 1 system model
● 2 properties
● 3 great Russian researchers
● Presented tool

– Projection matrix
– Stability constraints
– Solving the LMI(Linear Matrix Inequality)
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1 System Model

C⋅∂u t 
∂ t

=
∂Q t 
∂ t

=i t 

C u̇= i
L i̇=u

System model
● Physical system(VLSI application) → field-solvers / parasitic 

extractors  
● warm-up: RLC example
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● Tackle the model: Modified Nodal Analysis
– Find nodal
– Kirchhoff's Laws

i1
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1 system Model
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C v̇ 1−v̇2 G1v1−v2 is1=0
C v̇2− v̇1 G1v2−v1G2 v2iL =0

L i̇L −v2 =0
−v1 =−us1

i1=−i s1

● Tackle the model: Kirchhoff's Laws

i1
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E ẋ=A xB u , y=CT x

sE X=A XB U

1 system Model

Y=CT X=CT sE−A −1BU
Tr  s=CT sE−A −1B

● Linear descriptor system

● Transfer function Tr(s): through Laplace transformation

sE−A X=B U X= sE−A−1 BU
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1 System Model - When theory meets 
practice

● Feasibility v.s. circuit scale
– “It is the mark of an educated mind to rest 

satisfied with the degree of precision which
the nature of the subject admits and not to 
seek exactness where only an approxima-
tion is possible. ”  
                              - Aristotle (around 350 B.C.)

➔ Approximation by model order reduction
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1 System Model - Model Reduction

● Example
– Task: to weight an elephant

Directly weight: put the real elephant on the balance
Approximation: extract the most deciding parameters
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∥M− M∥p=∥M∥p=∑
j=1

c

∑
i=1

c

∣mij∣
1 / p

M=U V T

M=U V T

● Eigenvalue approximation for M

– Choose r largest eigenvalues for the new 
approximating matrix with rank r

● Minimal distance to the original matrix by Frobenius 
norm

● BUT: eigenvalue decomposition too luxurious

1 System Model - Model Reduction
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Tr  s=M 0M 1 sM 2 s
2... k-th moment: 

k-th coefficients of 
the Taylor expansion 

M k=C
T K k R

● Moment matching
– Concept: Taylor expansion of Tr(s)

● Construction of moment
K=A−1 E
R=−A−1B

E ẋ=A xB u , y=CT x

● Contribution of moment
– s corresponds to the frequency; the lower order 

terms dominate the accuracy of Tr(s) => to be 
approximated

1 System Model - Model Reduction
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2 properties - stability/passivity

M  s=L−1m t 

lim m t =0 ; when t0

Stability 

– asymptotic stability

∥mt −m0∥

Passivity: 
– incapable of generating energy of moment
– stable but non-passive system could produce unstable 

system when interconnected to stable and passive system
–  Implies stability
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● A.M.Lyapunov 
– Lyapunov function: conditions for a 

system to be stable and passive

3 great Russian researchers 

● A.N.Krylov 
– Krylov Subspace for picking the basis of 

the projection matrix to match the desired
moments → enforce accuracy

● B.G.Galerkin
– Galerkin projection:

congruence transformation able to
preserve the symmetry and definiteness 
of the original system
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Lyapunov Function
● Form: 

– stability: condition in 'mark2'

– passivity: storage func., incorporating inputs
● Functionality: its existence verifies the stability[orig.ref[11]

[12]] 

Lx ≥0 ; equal only when x=0

∂Lx 
∂ t

≤0 ; equal onlywhen x=0  for asymptotic stability
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Krylov subspace

Kr K , R , q=colspan[R ,KR ,K 2R ,... , Kq R]
colspanV =Kr K ,R ,q

● Form: Krylov subspace: definition and application

● Functionality: for constructing the projection matrix 
– q accurate moments
– avoid matrix-matrix operation in finding the eigenvalues 

or solving linear system

V TV=I

K=A−1 E
R=−A−1B
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● Form: projection pair (V, V)

Avv=V
T AV

Bv 0=V
T B

Evv=V
T E V

CT v=C
TV

Evv ż=Avv zBv0u , y=CT v z

Galerkin Projection – congruence 
transformation

V T EV ż=V T AV zV T Bu , y=CT V z

● Functionality:
– Order reduced

Congruence 
transformation
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Galerkin Projection – congruence 
transformation

● Cons: 
– limited application: extracted large system in VLSI 

applications are non symmetric  and indefinite
– sacrifice accuracy for stability

● Functionality:
– For system with E and -(A+A^T)  SPD, such as in 

modeling RLC network: automatically preserve the 
definitiveness[ref.6]



 MB-JASS 2009 16Kun Lu,

Krylov and Galerkin: Moments 
matching 

● Order reduced by (V,V) projection

M k =C
T K kR R=A−1B

M k =C
T v K

k R
K=A−1 E

R=Avv
−1Bv 0

K=A vv
−1Evv

It is shown in [PRIMA] that the first q/N moments of the two systems are equal
●mainly by expanding M and simplification

Tr  s=M 0M 1 sM 2 s
2...

E ẋ=A xB u , y=CT x

Tr  s= M 0 M 1 s M 2 s
2...

E vv ż=Avv zBv0u , y=CT v z
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Position check
● A large system →  field extractors → a linear descriptor 

system model
● Stability, passivity → verified by the existence of Lyapunov 

function
● Order reduction → a projection based way by taking some 

basis from the Krylov space, then transform the model using 
Galerkin projection pair. 

● But, do we trust our extractors? 
– Original indefinite / unstable model
– Even physical stable → numerically unstable
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Principle of the presented tool

● Object: ensure stability and passivity meanwhile being 
as accurate as possible
– Sacrifice accuracy for stability
– Projection pair (V,V) → (U,V) right and left 

projection pair
● U for stability and passivity
● V for accuracy by moment matching
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Projection-based Model Reduction

x≈Vz EV ż=AVzBuEx=AxBu

UT EV ż−AVz−Bu=0Euv ż=Auv zBuu

Projection framework
–  (V,V) pair -> (U,V) pair
–  Non-congruence transformation; also fit for indefinite 

and unstable models

Euv=U
T EV

Auv=U
T AV

Bu=U
T B
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(U,V) pair – Krylov-subspace-based 
construction

 

v k=s p E−A 
−1 Ek  s pE−A 

−1 B

uk=C
T  sq E−A 

−1 E sqE−A
−1k

Krylov-based, projection matrices constructed as:
range V ⊃vk

range U ⊃uk

Other methods like POD and TBR:
zeroth moment of the transfer function for multiple frequency points

Significance of such constructed U and V:
● Loss of info. → important dynamics 
● 0-th to m-th moment matching of the transfer function 

at frequency sp and sq
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● How about stability?

–   Galerkin projection keeps the definiteness for the 
transformed system. Thus, stability and passivity are 
preserved. 

–  Not the case for unstable or indefinite models

Consideration on Projection-based Model 
Reduction?

Trade accuracy for stability
● Fix V and find U satisfying stability condition
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Stability Conditions for U

ETP AAT P E=−Q2≤0

E ẋ=A xB u , y=CT x

∂Lx 
∂ t

≤0

∂Lx 
∂ t

= xT ET P A xxT AT P E x≤0

●  A model is stable if its Lyapunov Function exists

● Property of Lyapunov Function (assume autonomous model 
with u=0):

Ax A xT

Lx =xT ET P E x

∂Lx 
∂ t

= xT ET P E ∂ x
∂ t
∂ x

T

∂ t
ET P E x= xT ET P E ẋ ẋT ET P E x
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U T EV is SPD! UT EV=Q1

V T ETU PU T AVV T ATU PU T EV=−Q2

● Take a look at S.1:  
- Quadratic in U:  Try like for E with dimension 1000*1000
- Let's transform s.1 U T AVV T AT U=−Q2

U

● Stability condition for the reduced model 

Stability Conditions for U

s.1

s.2L z =zT Euv
T PEuv z=z

TV T ETU PU T EV z=zT U T EV Z

Euv ż=Auv zB vu , y=CT v z L z =zT Euv
T P Euv z

Euv
T P AuvAuv

T P Euv=−Q 2≤0

L z 0
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● Equality of s.1 and s.2: a solution to one system could 
solve the other system after certain transformation
– from s.1 to s.2

Stability Conditions for U

U , P ,Q 2

U=U PU T EV
U T EV=V T ETU  PU T EV =Q1

V T ETU PU T AVV T ATU PU T EV=−Q2

s.1

UT EV=Q1

U T AVV T AT U=−Q2

s.2
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Stability Conditions for U
● Equality of s.1 and s.2: a solution to one system could 

solve the other system after certain transformation
– from s.2 to s.1

U ,Q1,Q2

U , PSPD ,Q2

P= U E V −1=Q1
−1

U= U

V T ET U  U E V −1 U T AV
V T AT U  U EV −1 U T EV=−Q2

V T ETU PU T AVV T ATU PU T EV=−Q2

s.1

UT EV=Q1

U T AVV T AT U=−Q2

s.2
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● Now, quadratic constraint is replaced by a pair of linear 
constraints in U → LMI solver

Stability Conditions for U

U T EV=Q1

U T AVV T AT U=−Q2

s.2

● By the way
– for enforce orthogonality 

– Also possible fix U and solve for V

U T EV=Eu v=Q1 Eu v
−1Eu v=Eu v

−1Q 1=I

Eu v
−1Eu v=U

T E V −1U T EV

UT
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Stabilizing Solutions 

UT EV=Q1

UT AVV T ATU=−Q2

UEV T

UT AV AV T U

Q1

−Q 2

Q1

−Q2

U
EV T

[ AV T ]

●  Matrix structure

●  concatenation
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Stabilizing Solutions - considerations

● Number of unknowns
– (Nq) → Computation effort for LMI solvers (Nq)^2

● No dependence on eigenvalues of E,A
– Enforcing stability

● infinite subspaces exist
– Find the optimal solution
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● Trace of engineering: fix N-p rows of variable; 
- fast and cheap 
- adding a perturbation matrix                  of the unknowns

● Initial U0 predetermined : presume we already know 
   the answer! And                   has to satisfy the constraints.

Solving the LMI – Dependent Constraints

U ∈ℝ
N×p

U=U 0U 

The simplification or trick is                has a 
significantly low order p, which is artificially 
chosen. So the LMI constraints is fairly easy to 
solve. 

U ∈ℝ
N× p



 MB-JASS 2009 30Kun Lu,

Solving the LMI – Dependent Constraints

U

Ev
T

Evp
T Ev2

T

U 2

Evp
T U p

UT E v=Q 10
Q1

Ev2
T Q1 Q1 Ev2

TEv
T

U 2U 2

U 0 U UNow: And: U 

U 2

U p

0

To satisfy:

U p

U 2
0

U 0
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● 2q < p << N
● Q-order LMI, independent on N; 

– Unknowns O(p^2) → Cost O(p^4)
● Select only non-zero rows

AvpU p
T Avp

T U p

Solving the LMI – Dependent Constraints

UT A vA v
TU=−Q 20

Av
T U 0 Av

T U 0

−Q2

−Q 2

Similarly, to satisfy:
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Optimization over constraints
● Infinite stable projection subspaces spanned by 

U 
➢  Optimization problem for accuracy

✔  Be ambitious: start right with U0 for the best accuracy
min ∥U−U 0∥=min∥U∥

Q1=V e
TU 0

Q2=Av
TU 0U 0

T A v

Avp
T UU

T A vp=−Q2−Q2

Evp
T U= Q1−Q1UT E v=Q 10

UT A vA v
TU=−Q20
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Final Algorithm 1
● Given

– Define 
E , A ,V ,U 0

Ev=EV Av=AV
Q1=Ev

TU 0 Q2=V a
TU 0U 0

TV a

● p-nonzero Rows selection 

Evp=sel Ev , p A vp=sel  Av , p
● Optimization formulation

● Adding the perturbation

U=U0U

∥U∥
s.t. U

T Evp=Q1−Q1

U 
T AvpU

T Avp
T=−Q2−Q 2

min
U ,Q10,Q20



 MB-JASS 2009 34Kun Lu,

Consideration on this algorithm
● SUB-OPTIMAL w.r.t a certain q

If stabilizing solution not found, then increase q and re-do the 
routine

● Deflation of Krylov Subspace
● Coefficient: E=computation effort; I=inaccuracy

                  or                     (power: importance in our specific 
optimization problem)

   QUESTION: What is 'C' for 
   the problem being tackled?

I=1−lna 

C=E I

C=E∗ I

I

E

1

C=E∗ I 2
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Processing Flow

E ẋ=A xB u , y=CT x

extractors

Algorithm 1LMI solvers

optimization formulation

(U,V) → Euv ż=Auv zB vu , y=CT v z
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EXTENTION TO PASSIVITY

● A stronger condition for stability
● Simply by adding one constraint

– To guarantee no energy generated by the system
● However, still the same optimization problem 

∥U∥
s.t. U

T Evp=Q1−Q1

U 
T AvpU

T Avp
T=−Q2−Q2

min
U ,Q10,Q20

UT B=V TC

UT B=V TC
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Experimental results

37

3*3 power grid
● solver(EMQS)

– Unstable;N=1566
– q=10

● Galerkin Projection(cross)

–Look nice but potentially

unstable
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Further consideration
● Deflation of Krylov Subspace[ref.PROMIS]:
 

– Reduced model unchanged w.r.t. the chosen of V.
● Summary of different methods(idear, pros and 

ons)extractors and LMI solver

Kr  A , k , q=colspan[ k , Ak , A2 k ,... , Aq k ]
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Conclusion and Discussion

Stable model order reduction through a (left,right) 
projection pair
– Fix the right projection matrix, optimize the left one 

for best accuracy while preserve stability and 
passivity

– Also fit for indefinite or unstable system
– The efficiency lies in solving a LMI independent of 

the size of original large system
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