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1 Introduction
Our physical systems are always modeled for analysis and control.  The 
models could be extracted by field-solvers and parasitic  extractors.  The 
practical problem is that in VLSI applications(e.g. RF receiver, CPUs, or 
sensing and actuation chips) those extracted models end up with a very 
large scale. Thus to efficiently handle those models, approximation of the 
large scale models is necessary, which is achieved in the presented tool by 
order  reduction.  As  is  always  the  concern  in  approximation,  a  certain 
degree of accuracy should be satisfied. The other prime concern is stability 
of the model, because system-level modeling depends highly upon stable 
building blocks. Another more strict requirement for stability is passivity, 
arising from the attribute of the physical system. 
To fulfill all those requirements, the presented method adopts a projection-
based model order reduction method. 
The projection matrix is constructed out of the Krylov subspace, with the 
hope to preserve as much accuracy as it could. For the initially definite and 
stable  model,  Galerkin  projection  could  simply  preserve  the  stability. 
Galerkin projection employs a projection framework by using a left and 
right projection matrix pair. But in majority of the realistic cases, the initial 
models are indefinite and unstable, due to either the physical system or the 
field solver in use for extracting the model. Therefore, Galerkin projection 
is not able to guarantee the stability of the reduced model. 
To  guarantee  the  stability  and  passivity  of  the  reduced  model,  the 
presented  work  employs  a  new method  which  optimizes  the  degree  of 
accuracy while satisfies the stability and passivity requirements.  This is 
achieved  by  using  a  projection  framework,  namely  the  left  and  right 
projection matrices. At first, this projection framework takes the form of 
Galerkin projection, aiming to guarantee accuracy. Then, a procedure will 
optimize over the left projection matrix to fulfill the stability and passivity 
requirements. These requirements are formed as linear matrix inequalities 
(LMI), derived from the Lyapunov function of the model. The solution of 
the LMI will guarantee stability and passivity. Thus the initial model does 
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not have to be stable. In a word, we trade off as little accuracy as possible 
for stability. 

2 Background
A very simple introductory model is given is [Fig.1]. 

The electrical  behavior of this  physical  system is modeled by modified 
nodal  analysis  (MNA).  In  MNA,  equations  based  on  Kirchhoff's  Law 
could be set up for each non-grounded nodal. 

 

C v̇1− v̇2G1v1−v2is1=0
C v̇2− v̇1G 1v2−v1G2 v2iL=0

L i̇L−v2=0
−v1=−us1

 

After  some transformation and together  with the output in concern,  the 
modeled system could be expressed as

E ẋ=AxB u , y=CT x                                    (1)
The  vector x  contains the unknowns to be solved. 
If the physical system is composed of passive linear elements, such as in 
this  simple  RLC  circuits,  then E and  −AAT  are  symmetric  non-
negative definite matrix and the model will be stable and passive. 
For the ease of further explanation, define
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Fig.1 simple RLC system



         K=A−1 E
R=−A−1 B

 

To  analyze  models  in  (1),  apply  Laplace  transformation,  resulting  the 
transfer function shown in (2). 

X= sE−A−1 BU

Y=CT X=CT  sE−A−1 BU

Tr  s =CT sE−A−1 B                                         (2)
At  this  point,  the  output  response  could  be  fully  characterized  by  this 
transform function in frequency domain. Though in this example there is 
only one port, same analysis is applied analogously for multi-port model. 
The difference would be that B and C will be a matrix instead of a vector.

3 Projection-Based Order Reduction
The  order  of  models  described  in  (1)  could  be  so  large  that  the 
computational  complexity  of  directly  solving  them  is  not  affordable. 
Besides  that,  such  models  in  practice  extracted  by  field  solvers  are  in 
majority  cases  non-stable  and  non-passive,  making  them  actually  not 
usable. These concerns give rise to find a reduced order model able for the 
original model. This reduced order model should approximate the original 
one with a certain degree of accuracy, while guarantee the stability and 
passivity  properties.  This order reduction process is  implemented in the 
presented work by a projection-based approach. The basic concepts to be 
used in the approach will be introduced in the following two parts 3.1 and 
3.2.

3.1 Moments Matching and Accuracy
From (2),  the  accuracy of the  reduced model  lies  in approximating the 
transfer function, which could be expressed by Taylor expansion around 
s=0.

Tr  s =M 0M 1 sM 2 s
2...  

The coefficient matrix M i is defined as the i-th moment and is computed 
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as below.

        M i=CT K i R  
Thus, approximating the transfer function could be achieved by matching 
the lower order moments.  Approximation of a matrix could be done by 
keeping the the most pronounced eigenvalues, giving rise to the difficulty 
due to eigenvalue decomposition. 

3.2 Krylov Subspace and Projection Matrix
In  the presented work,  the approximation is  achieved by projecting the 
large model to a low order subspace. The projection matrix is constructed 
with the help of Krylov subspace defined as below.

Kr K , R ,q=colspan [R , KR , K 2 R ,... , K qR]  
And the basis matrix of this subspace is used as the projection matrix

colspanV =Kr K , R ,q  ,                                   (3) 
where q is the order of the reduced model and it is artificially chosen. To 
be specific, the practical calculation of V is

v k= s p E−A−1 E k s pE−A−1 B , 
corresponding to the k-th vector in V.  Worth to be mentioned, this way of 
constructing  the  projecting  vector  is  to  match  the  moments  around 
frequency  s p .  Similar  calculation  could be done for  matching around 
another frequency. And since a projection pair (U,V) is to be used, the left 
projection matrix U could be constructed as in the equation below around 
different frequency than V.

uk=CT sr E−A−1 sr E−A−1 E k

4 Two Required Properties
The reduced-order MNA  matrix are

          E vv=V T E V

          Avv=V T AV

4



          Bv 0=V T B

          CT v=CT V                                            (4)
and the reduced model is now expressed by the linear descriptor

       Evv ż=Avv zBv0u , y=CT v z ,                                   (5)
where x≈Vz .                                                                  
The reduced model is always passive after the transformation of Galerkin 
projection in (4) [2]. As for accuracy, the first q moments of the original 
model could be preserved (the proof is shown in [2], from (27) to (42)), or 
M vv i=M i , 0≤i≤q .

However, as is mentioned, Galerkin projection requires the original model 
being  stable and definite. In practice, such transformation could not be 
directly applied in many cases due to the following facts. First, even for 
stable  system,  the  descriptor  might  not  be  SPD,  such  as  in  modeling 
nonlinear systems. Second, even the physical system is stable and passive, 
the extractor might generate unstable model.  The solution is addressed in 
chapter 5 and 6.

5 Derived Constraints
Each required property implies certain constraints for the reduced order 
model to satisfy. Interesting enough, these properties are fulfilled through 
the existence of the Lyapunov function as shown in 5.1. And constraints 
could be obtained by satisfying the properties of this Lyapunov function as 
shown in 5.2.

5.1 Lyapunov Function
As is stated in chapter 4, Galerkin projection, able to preserve stability, can 
not guarantee stability for the extracted unstable large order model. The 
remedy to this problem is to set up the stability constraints to be fulfilled 
by the transformation using projection matrix. In the presented work, the 
algorithm  starts  with  Galerkin  projection,  meaning  the  projection 
framework is achieved by constructing a certain base out of the Krylov 
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subspace.  Then,  it  fixes  the  right  projection  matrix  and  alters  the  left 
projection matrix so that the stability constraints are fulfilled. 
The  constraints  are  formulated  by verifying the  existence  of  Lyapunov 
function  L(x)  [3].  Lyapunov  function  has  to  satisfy  two  requirements 
expressed in (6) and (7).

     L x≥0 ; equal only when x=0                                      (6)

     ∂L x 
∂ t

≤0 ; equal onlywhen x=0  for asymptotic stability                    (7)

The  construction  of  Lyapunov  function  is  done  by  setting  it  with  an 
artificial form as below. 

L x= xT ET P E x  

5.2 Constraints
Therefore, for satisfying (7), 

       ∂L x 
∂ t

=xT ET P E ∂ x
∂ t

∂ xT

∂ t
ET P E x= xT ET P E ẋ ẋT ET P E x           (8)

for autonomous system, u=0 and  E ẋ in (8) could be replaced by A x , 
giving rise to the first constraint as below.

      ∂L x 
∂ t

=xT ET P A xxT AT P E x≤0  

Finally the derived constraint is written as
ET P AAT P E=−Q≤0 , 

where Q is a defined symmetric positive semi-definite matrix(SPSD) and
'≤' is the generalized matrix inequality. 

Such constraint also has to be true for the reduced system    
          Euv ż=Auv zB vu , y=CT v z ,

where Euv , Auv , Bv , CT
v are  the  transformed  system  matrices  by  the 

projection pair (U,V). Accordingly the constraint is expressed as in (9). 
Euv

T P AuvAuv
T P Euv=−Q≤0                                  (9) 

The interpretation of constraint (9) is that if there exists an SPD solution
P , then the system is stable. The difficulty in solving for P is that this 
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constraint is quadratic in U as shown in (10).
       V T ET U P U T AVV T AT U P U T E V=−Q2                    (10)

Since only the existence of solution is of concern, certain simplification 
could  be  adopted,  provided  that  it  will  result  in  an  solution.  Such 
simplification is done by defining  U P U T E V as  U . Thus the constraint 
in (10) becomes 

U T AVV T AT U=−Q2 , 
which is linear in U and therefore much easier to solve. 
After  this  simplification,  the  corresponding  Lyapunov  function  of  the 
reduced model takes the form as in (10.1).

L  z =zT Euv
T P Euv z=zT V T ET U P UT EV z=zT U T EV Z        (10.1)

Due to the other requirement  L  z 0 ,  U T E V has to be an SPD matrix, 
yielding the other constraint as below.

      U T E V=Q1  
Finally,  all  the  stability  constraints  have  been  derived.  They  are  to  be 
satisfied for the reduced model by using a proper projection matrix. Worth 
to note, even  U is used for simplification, the constraints expressed by 
U are equal to the original model.  Due to this equality, the hat notation 

will be omitted. For the case of convenience, the stability constraints are 
written as in (11) from now on.

U T AVV T AT U=−Q2

U T E V=Q1                                                    (11)

6 Problem Formulation and Solution
The solution of the LMI system is the proper left projection matrix that 
will guarantee stability. This solution could be obtained by certain LMI 
solvers [4]. The difficulty lies in the fact that the computational effort for 
solving  the  LMI  system  is  proportional  to  the  power  of  number  of 
unknowns, and the (11) has a very large number of unknowns. Another 
concern is there exist infinite number of stabilizing subspace spanned by 
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U. And for one stabilizing subspace, infinite number of U could solve the 
(11). Thus, the degree of freedom in solving the LMI offers the feasibility 
to find the most optimal solution in the sense that it is the most accurate 
projection matrix. Such accuracy is measured by calculating the distance 
of the solution matrix and the matrix U0 constructed to ensure accuracy. In 
the presented work from [1], U0 is directly constructed using V, which is 
actually not the most accurate left projection matrix, because it could well 
be constructed using the same way as in (3) for matching more moments. 
As a result of the above two primary concerns, an algorithm is developed 
based on two corresponding ideas:

I. Fix a majority of unknowns in U and solve for the rest. The benefit is 
the significantly easier LMI system. 

II. Optimize  the  solution  of  U  for  the  best  accuracy  over  the  LMI 
constraints.

6.1 The Core Algorithm 
I. First  certain  field  solvers  could extract  the  system mode,  i.e.,  the 

system matrices, giving the original system matrices E , A .

II. Construct the right projection matrix V based on the Krylov subspace 
approach, as a result the first q moments around certain frequency 
could be matched. Then assign U 0=V .

III. For the reduced model, its system matrices are formulated as below.
E v=EV Av=AV

Q1=E v
T U 0 Q2=V a

T U 0U 0
T V a

Here Q1 and Q2 are  resulted  by  substituting  the  initial U 0 into 
the  constraint  formulas  and  they  are  not  necessarily  SPD  and 
therefore yielding  an unstable reduced order model.

IV. Next step is to fix the unknowns of U 0 other than p selected rows. 
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And  then  select  p  non-zero  rows  of  the  reduced  model  matrix 
corresponding to the unknowns to be solved. 

     E vp=sel E v , p Avp=sel  Av , p

V. The  essential  optimization  process  over  the  stable  and  passive 
constraints. The solution is optimal for a certain value of p, but only 
sub-optimal  in  the  whole  solution  subspace. 

min ∥U∥
s.t. U 

T E vp=Q1−Q1

U 
T AvpU 

T Avp
T=−Q2−Q 2

U T B=V T C

                 (12)

VI. The final left projection matrix is formulated in (13) by adding the 
perturbation matrix to the initial matrix constructed for accuracy. The 
result is a stability preserving but less accurate projection matrix.

     U=U 0U                                              (13)

It  needs  to  be  pointed  out  that  in  the  presented  work,  the  specific 
optimization algorithm and choice of p is not mentioned.

7 Experimental Results 
Consider a very simple  3*3 power grid,  consisting of copper wires.  Its 
extracted model (by EMQS solver [5]) is fairly large, with order N=1566. 
More undesirable is the model is unstable. Applying the core algorithm 
and setting the reduced order q=10, a reduced stable model is the resulted 
solution  of  the  optimization  process.  As  is  shown  by  [Fig.2],  several 
interesting observations need to be pointed out.

I. Though being unstable, the Galerkin projection reduced model has 
an accuracy comparable to the stable reduced model. However, such 
unstable  models  would  generate  unphysical  behavior  upon certain 
stimulation such as inputs or noise.

II. A more  careful  observation  of  the figure  shows that  the  Galerkin 
projection generated reduced model actually conforms  to the actual 
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curve better than the model generated by the core algorithm, mainly 
around the peak frequency  f ≈108 . And since the core algorithm 
starts with Galerkin projection, it adds a small perturbation to the left 
projection matrix U. As a result, it gives a stable reduced model, with 
the  trade-off  of  being  a  little  bit  less  accurate  comparing  to  the 
Galerkin projection.

8 Conclusion
The presented  work is  able  to  handle  indefinite  and unstable  model  in 
model order reduction. The order reduction is achieved by the projection 
framework and the stability and passivity properties of the reduced model 
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Fig.2 Real part of the impedance for the 3*3 power grid. 
The original model denoted by solid line is unstable with 
order N=1566. Galerkin projection returns an unstable 
reduced model denoted by crosses. The core algorithm 
gives a stable reduced model denoted by circles



are satisfied by solving a set of linear constraints. Worth to mention is that 
same procedure could also be done by fixing the left  projection U and 
optimize for the right projection matrix V. In practice, the whole procedure 
is implemented by the core algorithm. In this algorithm, in order to make 
the  computational  effort  independent  of  the  original  model  size,  the 
number of unknowns to be solved is limited to a very low range simply by 
fixing all the rest unknowns as the initial values. As a result, a stable but 
slightly  less accurate reduced order model is  generated and the specific 
experimental results show satisfying performance. 
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