

Shunt current Shunt current Tissue current Current

- A larger electrode surface area leads to bigger shunt currents and thus to higher losses
- From the clinical standpoint small electrodes are desirable for undisturbed blood flow
- Problem: A small electrode surface area decreases the interface capacity and thus increases the impedance

Electrodes with a <u>small geometric surface</u> but a <u>large effective surface</u> are the best solution for saving energy during stimulation

Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT

Parameter		Range
Reservoir capacity (C _{res})		5 to 20 μF
Coupling capacity (C _c)		5 to 20 μF
Specific Helmholtz capacity (C _H)		0.1 to 500 μF/mm ²
Lead resistance (R _L)		10 to 100 Ω
Geometric electrode surface (A)		1 to 20 mm ²
Surface of indifferent electrode (A _{in})	unipolar: bipolar:	500 to 1500 mm ² 20 to 100 mm ²
Membrane capacity (C _m)		0.01 μF/mm ²
Tissue resistance (R)		30 to 70 k Ω
Shunt resistance (R _{Shunt})		0.1 to 2 k Ω

