Shunt current Shunt current Tissue current Current - A larger electrode surface area leads to bigger shunt currents and thus to higher losses - From the clinical standpoint small electrodes are desirable for undisturbed blood flow - Problem: A small electrode surface area decreases the interface capacity and thus increases the impedance Electrodes with a <u>small geometric surface</u> but a <u>large effective surface</u> are the best solution for saving energy during stimulation Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT | Parameter | | Range | |---|-----------------------|--| | Reservoir capacity (C _{res}) | | 5 to 20 μF | | Coupling capacity (C _c) | | 5 to 20 μF | | Specific Helmholtz capacity (C _H) | | 0.1 to 500 μF/mm ² | | Lead resistance (R _L) | | 10 to 100 Ω | | Geometric electrode surface (A) | | 1 to 20 mm ² | | Surface of indifferent electrode (A _{in}) | unipolar:
bipolar: | 500 to 1500 mm ²
20 to 100 mm ² | | Membrane capacity (C _m) | | 0.01 μF/mm ² | | Tissue resistance (R) | | 30 to 70 k Ω | | Shunt resistance (R _{Shunt}) | | 0.1 to 2 k Ω |