Chronology of published investigations of *Corynebacterium glutamicum* in the department of biotechnology (University of Würzburg)

Tobias Knaf

ulius-Maximilians-

Biozentrum

Phylogenetic tree of Actinobacteria

- large amount of lipids in form of mycolic acids in cell wall additional to the thick peptidoglycan layer
- mycolic acids are part of a 2nd bilayer surrounding the peptidoglycan \rightarrow low permeability
- → Porins are necessary to allow passage of hydrophilic solutes

Corynebacterineae

Julius-Maximilians-

WÜRZBURG

Hünten et al.

Biozentrum

Porin

length of mycolic acids varies

Mycobacteria:60-90 C-atomsTsukamurella:64-74 C-atomsGordona:52-66 C-atomsNocardia:46-58 C-atomsCorynebacteria:22-39 C-atoms

causes dangerous infections
 → *M. tubercolosis*, *M. leprae* and *C. diphteriae*

www.genomenewsnetwork.org

Corynebacteria: • aerobic, non-sporulating, gram-positive actinomycete

- contain thick peptidoglycan layer covalently bound to arabinogalactan
- mycolic acids linked to arabinogalactan by ester bonds

Synthesis pathway of glutamate in *C. glutamicum*

Julius-Maximilians-

Biozentrum

Identification of Channel-Forming Activity in the Cell Wall of *Corynebacterium glutamicum*

- Niederweis et al, 1995 -

Fractions formed in a sucrose-step gradient of the cell envelope from *C. glutamicum*

Biozentrum

major fraction of the cytoplasmic membrane

highest channel-forming activity; free of cytoplasmic membrane

В

Julius-Maximilians-

	м	CE	F1	F2	F3	F4	F5	F6	F7	F8
MW(kDa) 66		1			++			11	111	
436	_									
29 24 20 —				E				-	-	
1 4 —	-			-						

Single-channel recording and histogram of fraction F7 of the sucrose-step gradient

Biozentrum

Julius-Maximilians-

- channel-lifetime: several minutes
- G = 6nS in 1M KCl
- zero-current-membran potential: 40mV
- P_{cat}/P_{an}: 9-11
- →cation-selectivity
- →existence of a hydrophilic pathway through the mycolic acids

Biochemical and Biophysical Characterization of the Cell Wall Porin of *Corynebacterium glutamicum*: The Channel is Formed by a Low Molecular Mass Polypeptide

- Lichtinger et al, 1998 -

ulius-Maximilians-

Biozentrum

10% tricine containing SDS-PAGEs of the cell wall channel protein of *C. glutamicum*

- 5kDa polypeptide with high channel-forming activity
- partial sequencing: 19aa-sequence without homology in the databases

Julius-Maximilians-

Biozentrum

Single-channel recording of pure 5kDa protein of the cell wall

- defined channels of 5.5nS in 1M KCl
- increase of conductance up to 30 min
- Up to 10⁶ channel/cm² formed in the membrane

Histogram observed in presence of the cell wall extracts and pure 5kDa protein

Biozentrum

Julius-Maximilians-

- minor fraction of half conductance
 part of an oligomer or an substate
- identical channels in whole cell extract
- conductance similar to *M. smegmatis/ chelonae*

Average single-channel conductance G of the cell wall channel in different salt solutions

salt	concentration (M)	$G(\mathrm{nS})$
LiCl	1.0	2.6
NaCl	1.0	3.5
KC1	0.03	0.60
	0.10	1.1
	0.3	2.0
	1.0	5.5
	3.0	14.5
KCH ₃ COO (pH 7)	1.0	4.8
RbCl	1.0	6.3
CsC1	1.0	5.6
NH ₄ Cl	1.0	5.0
N(CH ₃) ₄ Cl	1.0	2.2
N(C ₂ H ₅) ₄ Cl	1.0	1.0
TrisCl	1.0	0.6

cation-selectivity

Julius-Maximilians-

Biozentrum

WÜRZBURG

permeability follows the mobility sequence

 \rightarrow Cs⁺ = Rb⁺ = K⁺ > Na⁺ > Li⁺ > Tris⁺ and NH₄⁺ > N(CH₃)₄⁺ > N(C₂H₅)₄⁺

Fit of the single-channel conductance data by using the Renkin correction factor

Department of Biotechnology

→ diameter of the cell wall channel: 2.2nm

Julius-Maximilians-

Biozentrum

Single-channel conductance as a function of the KCI-concentration in the aqueous phase

- no linearity \rightarrow influence of point net charges near the channel
- cation-selectivity not related to a binding site
- 2 negative point net charges \rightarrow q = 3,2 * 10 ⁻¹⁹ As

ulius-Maximilians-

Biozentrum

Zero-current membrane potentials V_m for a 10-fold salt-gradient

salt	$V_{\rm m}({ m mV})$	$P_{\rm cation}/P_{\rm anion}$
KC1	39	8.1
LiCl	31	4.9
KCH ₃ COO (pH 7)	43	11.6

• more diluted site became positive \rightarrow movement of cations

• anions have a certain permeability but decreased

Biozentrum

Comparison of cell wall channel properties of *M. chelonae*, *M. smegmatis* and *C. glutamicum*

cell wall channel	G (nS) in 1 M KC1	selectivity P _c /P _a in KCl	negative point charges at the channel mouth	channel diameter (nm)	ref
M. chelonae	2.7	14	2.5	2.0	17
M. smegmatis	4.1	9.7	4	2.6, 3.0	18
C. glutamicum	5.5	8.1	2	2.2	This study

• higher conductance at same diameter caused by cell wall thickness (Ohms law)

summary:

Julius-Maximilians-

Biozentrum

- 1. channel-forming protein of 5kDa
- 2. G = 5,5 nS in 1M KCl
- 3. diameter: 2.2nm; 2 negative charges in or near the channel

The low-molecular-mass subunit of the cell wall channel of the Gram-positive *Corynebacterium glutamicum*

- Lichtinger et al, 2001 -

Microscopic analysis of *C.glutamicum* cells treated with anti-PorA IgG

 \rightarrow PorA localized in the cell envelope

Julius-Maximilians-

Biozentrum

Electron micrograph of *C.glutamicum* cells treated with anti-PorA IgS and anti-rabbit IgG labelled with gold particles

 \rightarrow PorA localized in the cell envelope

Inverse PCR of chromosomal DNA with different restriction enzymes

- after CNBr-cleavage: determination of a 43aa-polypeptide (4680,3 Da)
- PCR not completely sufficient to reconstruct whole nucleotide sequence
- restriction with Bgl II in inverse PCR: 1,4 kb PCR product
- \rightarrow Reconstruction by combining the PCR and the sequences of the clones

ulius-Maximilians-

ZBURG

Biozentrum

Nucleotide sequence of the porA gene locus of *C. glutamicum* and its flanking regions

в

Julius-Maximilians-UNIVERSITÄT

Biozentrum

- 1- AGATCTCGCTGACACCACCGGCGAGAATCTGGATAACTTCTCTTCCTAAGAGAAATCCGA -R S R * H H R R E S G * L L F L R E I R 61- TTTGGCTGATTTGGCTGATTGGCTAAAATCCACAGCCTTCCCCCTCCCCCCCATCTCAA - 120 FG*FG*LAKIHSLPPSPSSQ CglutN5 121- CACTTAATAGGAGAATTTAAAATGGAAAACGTTTACGAGTTCCTTGGAAACCTTGATGTC - 180 H L I G E F K M E N V Y E F L G N L D V primers used for derivation 181- CTTTCCGGCTCCGGCCTCATCGGCTACGTCTTCGACTTCCTCGGCGCCTTCCAGCAAGTGG - 240 LSGSGLIGYVFDF of the DNA sequence 241- GCTGGCGCAGTTGCTGACCTCATCGGTCTGCTTGGCTAATTAACTTCGCCCACGGGCAAA - 300 GAVADLIGLLG* LTS P TGK CgKratz1 ribosome-binding site 301- GTTTTCAAAAACTCTGATCCATATGGATCAGAGTTTTTTCGTATCTGCCACCAGAAAGAC 360 V F K N S D P Y G S E F F R I C H Q K D 361- GCCCCTTTGGCACGCCGAATTAGTCAATGGTGGGTAAACTTCCC -----420 LARRISOWWVNF A P the 36aa that agree with the aa-sequencing 421. unsequenced region 941- CCCGTTTTGCTATCCGCCAGGTTGATCCTGTGCGTCAGTGGAAGCTTTCCCCAATGGACT from the protein sequencing -1000 PVLLSABLILCVSGSFPOWT 1001- TGGCTTCACTTGATCGCTGGGATGATTACACCCGCGCTAAGGAAGAGCAGTTCCGTTACA -1060 W L H L I A G M I T P A L R K S S S V T 1061- CCGACACTGATGAGTCCCCGTGGATCACCATCAAGTCGAATGACAAGAAACGTGCGCGTA -1120 PTLMSPRGSPSSRMTRNVRV 1121- TCAACGGCATGCGTTATGTATTGTCCAAGTTTGATTACACCGACAAGGATTACAAGCTCG -1180 S T A C V M Y C P S L I T P T R I T S S 1181- TTGGTGAGCCTGACCCTAAGGTTGTGCTTCGTGGGCGGCACCAGATCGGTGACTAGTCAC -1240 L V S L T L R L C F V G G T R S V T S H 1241- TAGGCGGGCATTGAAAAAACTCCCCAGCACCTTTCAGTAGAAGGTGCTGGGGAGTTTTTT -1300* A G I E K T P Q H L S V E G A G E F F 1301- ATTTAAGTAAGCCCAATCGGTTGTGATCTAGTTCGGTGTTCTATGCTGCTGCGATCTCCT -1360 I * V S P I G C D L V R C S M L L R S P 1361- GGCAGATCT GRS ORF of 138bp encoding a protein of 45aa
 - No N-terminal aa-extension → no export by Sec-system

Southern blot analysis of several members of the mycolata under low stringency conditions (48°C)

Biozentrum

Julius-Maximilians-

WÜRZBURG

kb

1 C. callunae
 2 C. glutamicum
 3 Rhodococcous erythropolis
 4 Nocardia corynebacteroides
 5 C. pseudotuberculosis
 6 chromosomal DNA

- all bands only under low stringency conditions
 → conserved sequences for porins
- more than one cell-wall channel gene
- •No DNA-sequence homology to porA of 3 and 4

6

Summary

- the channel-forming protein PorA (5kDa) located in the cell envelope
- gene porA comprises 138bp encoding a 45aa-polypeptide
- excess of negative charges \rightarrow cation-selectivity
- no N-terminal extension \rightarrow no use of Sec-appartus
- α-helices and ß-strands both possible to span the mycolic acid layer (6.2nm) once as a cylinder (d=2.2nm)

Por A Represents the Major Cell Wall Channel of the Gram-Positive Bacterium *Corynebacterium glutamicum*

- Costa-Riu et al, 2003 -

Southern blot analysis of *C. glutamicum* wild-type and ΔporA mutant cells

Julius-Maximilians-

Biozentrum

WÜRZBURG

• release of a 169bp fragment when digested with Bgl I

Department of Biotechnology

• the fragment only detected in wild-type C. glutamicum

 \rightarrow *porA* gene not present in Δ porA

0,8% agarose gel from the PCR products obtained by using wt and Δ porA mutant DNA

Julius-Maximilians-

Biozentrum

WÜRZBURG

deletion of a fragment of about 150bp

Department of Biotechnology

 \rightarrow fragment contains the *porA* gene

Deletion of *porA* within the genome of *C*. glutamicum

Cgl2658 (porA)

cctcatctcaactcttataggagaattaaaatggaaacgtttacgagttccttggaaac cttgatgtcctttccggctccggcctcatcggctacgtcttcgacttcctcggcgcttcc agcaagtgggctggcgcagttgctgacctcatcggtctgcttggctaattaacttcgccca

- deletion of 30bp before start codon and 13bp after stop codon
- no ORF before or after *porA* was found

Julius-Maximilians-

Biozentrum

WÜRZBURG

 \rightarrow only deletion of *porA* responsible for observed phenotype

RT-PCR of total mRNA from wt C.glutamicum and the Δ porA mutant strain

Julius-Maximilians-

Biozentrum

- amplification with porA-specific primers Por1 and Por2
- only one gene coding for PorA in the C.glut-chromosome
- remember: *Mycobacterium smegmatis* contains 4 genes coding for MspA like proteins

Diameter of the inhibition zones of growth of *C. glutamicum* wild-type and Δ porA mutant

	Diam of inhibition zone (mm)			
Antibiotic	C. glutamicum wild type	C. glutamicum ∆porA mutant		
Ampicillin	>25	NI		
Kanamycin	>25	5		
Streptomycin	>25	4		
Tetracycline	>25	NI		
Gentamicin	5	2		

• increase of antibiotical resistance in the mutant

ulius-Maximilians-

ZBURG

Biozentrum

- major role of PorA in transport mechanisms of antibiotics
- \rightarrow caused by large diameter; preference for positively charged solutes

Growth curves for wild-type and ΔporA mutant of *C. glutamicum*

- high nutrient concentrations/ low cell densities: diffusion sufficient for growth
- minimal media: decreased mutant strain growth by decreased nutrient influx
- glutamate production: no (permeability) difference for export of glutamate (negative)

ulius-Maximilians-

Biozentrum

Single-channel recordings in the presence of wild-type and Δ porA mutant cells

Biozentrum

Julius-Maximilians-

RZBURG

- G (wt) = 5,5nS in 1M KCl
- G (mutant) = 0,7nS in 1M KCl
- 0,7nS-channel anion-selective
- \rightarrow explains why deletion of PorA is not lethal

Department of Biotechnology

Single-channel recording in the presence of synthetic PorA

ulius-Maximilians-

BURG

Biozentrum

Identification of an anion-specific channel in the cell wall of the Gram-positive bacterium *Corynebacterium glutamicum*

- Costa-Riu et al, 2003 -

Influences of different carbon sources of the growth parameters of wt and Δ porA mutant

Quitar	Doubling	; time (hours)	Final OD ₆₆₀		
Carbon source	Wild-type	∆ <i>porA</i> mutant	Wild-type	∆ <i>porA</i> mutant	
Glucose	1.7	(1.8)	33	27	
Maltose	2.0	1.8	31	29	
Sucrose	1.7	1.6	28	27	
Ribose	2.3	2.3	24	23	
Pyruvate	2.5	2.3	14	11	
Lactate	5.7	4.5	8	9	
Citrate	3.9	>7	13	2.5	

- neutral or negatively charged carbon sources: no change of growth
- only citrate points out differences

Julius-Maximilians-

ZBURG

Biozentrum

 \rightarrow mutant strain shows permeabilities: existence of other channels

Department of Biotechnology Growth curves of wild-type Corynebacterium

glutamicum and the $\Delta porA$ mutant

- decreased growth rate with citrate as sole carbon source
- mutant strain still growth

Julius-Maximilians-UNIVERSITÄT

Biozentrum

RZBURG

 \rightarrow existence of other cell wall channels

10% Tricine SDS-PAGE of the purification procedure of PorB

Julius-Maximilians-

Biozentrum

WÜRZBURG

marker
 organic-solvent-precipitate
 FPLC-fraction 23
 FPLC-fraction 21
 FPLC-fraction 25

→pure highly-active 10kDa-protein in fraction 23 after extraction, precipitation and purification of the ΔporA mutant
Single-channel recording and histogram in thes presence of the pure 10kDa protein (Por B_{Cglut})

Department of Biotechnology

defined channels with G = 700pS in 1M KCI

increase of conductance up to 20min

Julius-Maximilians-

Biozentrum

RZBURG

• long lifetime of channels (similar to *Mycobacterium chelonae* and *M. smegmatis*)

Average single-channel conductance G of $PorB_{Cglut}$ in different salt solutions

Salt	Concentration (M)	Single-channel conductance G (pS)
LiCI	0.1	200
KCI	1.0 0.03	700 100
	0.1 0.3	200 400
	1.0 3.0	(700) 1500
KCH₃COO (pH 7)	0.1 1.0	100 250

more influence of anions if exchanged

 \rightarrow anion-selectivity

Julius-Maximilians-

Biozentrum

Single-channel conductance of $PorB_{Cglut}$ vs. the KCI concentration in the aqueous phase

Department of Biotechnology

- no linearity \rightarrow 1,5 positive charges near or in the channel
- diameter of about 1,4nm

Julius-Maximilians-

Biozentrum

Titration of membran conductance induced by PorB_{Cglut} with sodium citrate (pH 6)

Julius-Maximilians-

Biozentrum

RZBURG

5 nS

1 min

addition of sodium citrate solutions

dose-dependent block of conductance

Department of Biotechnology

- \rightarrow binding-site for citrate possible
- → conductance of the 700ps-channel depends on presence of citrate

Zero-current membrane potentials V_m for a 10-fold salt-gradient

Salt	Zero-current membrane potential V _m [mV]	P _{cation} /P _{anion}
KCI	-30	0.12
LiCI	-28	0.14
KCH₃COO (pH 7)	-29	0.13

• more diluted site becomes negativ \rightarrow pass of anions \smallsetminus

anion-selectivity

• V_m: about -29mV

Julius-Maximilians-

Biozentrum

RZBURG

 $\cdot P_{\text{cation}}/P_{\text{anion}}$: cations have still certain permeability

Aa-sequence of $PorB_{Cglut}$ compared with $PorC_{Cglut}$ and 2 homologes from *C.efficiens*

PorB_Cg PorB_Ce PorC_Cg PorC_Ce	MKISTRVAAIGAAAALGLTAFAGP-ASA MKKLRFATIAAATV-ALTASLTPSASA)FANLSSTNKELSPQYNWVA VSSSDELSDRFDWVG QDFNQIIDNFD	CPIVEASLAFYG CGILQTAIYTTG	LPEEGMRNN LAHENSTRS
PorB Ce	+	ADY ADRAQKCGIVE PN CRI ANRALTCGIV KE D P-QE	TAIENA SSNL DFLSQ L QL LSSNL	NDFFAGLSS SS SFFTA
In bold:	conserved in at least 3 of the	4 homologues		
Identity		Charges in the mat	ure protein	
PorB_Ce : PorB_Cg :	PorC_Cg: 30,9% PorC_Ce: 31,3% PorB_Ce: 42,1% PorC_Ce: 48,1%	PorB_Cg: 6pos 14ne PorB_Ce: 5pos 16ne PorC_Cg: 5pos 14ne PorC_Ce: 5pos 12ne	a a a	

- partial sequencing and blast: 126aa long porB_{Cglut} and PorB-like protein named PorC_{Cglut}
- $porB_{Cqlut}$ and $porC_{Cqlut}$ contain N-terminal extension \rightarrow Sec-apparatus

 \rightarrow both genes could be cotranscribed (no transcription terminator between)

MB-JASS 2007 – Properties of Channels Formed by Bacterial Porins and Toxins – 11.-21. March 2007 – Moscow, Russia

Julius-Maximilians-

Biozentrum

RZBURG

porB-porC locus and reverse transcription of total wild-type and ΔporA mutant mRNA

porB_{Cglut} and *PorC_{Cglut}* are transcribed in both strains

Department of Biotechnology

 \rightarrow both form a cotranscriptional unit

300

Julius-Maximilians-

Biozentrum

WÜRZBURG

wt ΔporA wt ΔporA wt ΔporA bp 1 2 3 4 5 6 7 600 500 400

A3 – A4 A1 – A2 A5 – A6

Julius-Maximilians-

WÜRZBURG

Properties of cell wall channels from the mycolata

Cell wall porin	G [nS] in 1 M KCl	Selectivity P₀/P₄ in KCl	Charges at the channel mouth	Channel diameter (nm)	Reference
C. glutamicum PorBcalut	0.7	0.12	+1.5	1.4	This work
C. glutamicum PorAcalut	5.50	8.10	-2.0	2.2 nm ^{1,2}	Lichtinger <i>et al.</i> (1998)
M. chelonae	2.7	6.3	-2.5	2.0 nm	Trias and Benz (1992);
				2.2 nm	(1993)
M. phlei	4.5	14.9	-2.2	1.8 nm ¹ ;	Rieß et al. (2001)
				2.0 nm ²	. ,
M. smegmatis	4.1	9.7	-4.0	1.8 nm ¹ 3.0 nm ²	Trias and Benz (1994)
N. corynebacteroides	5.50	3.80	-2.7	2.0 nm ¹ ,	Rieß and Benz (2000)
(R. corynebacteroides)				2.2 nm ²	
N. farcinica	3.0	8.2	-1.3	1.4 nm ¹ , 1.6 nm ²	Rieß <i>et al</i> . (1998)
R. erythropolis	6.00	11.80	-2.7	2.0 nm ^{1,2}	Lichtinger et al. (2000)
R. equi					
PorA _{Reg}	4.00	9.0	-1.5	1.8 nm ¹ , 2.0 nm ²	Rieß <i>et al</i> . (2003)
PorBBeg	0.30	0.16	+1.5	1.4 nm ¹²	
M. bovis BCG					
PorA _{Moo}	4.30	>1	ND	ND	Lichtinger et al. (1999)
PorB _{MDO}	0.78	<1	ND	ND	

Summary:

- $\mathsf{PorB}_{\mathsf{Cglut}}$ and $\mathsf{PorC}_{\mathsf{Cglut}}$ cotransribed \rightarrow use of Sec-system
- small proteins (10kDa) of *C. glutamicum* in contrast to MspA of M. smegmatis (20kDA) results of the cell wall thickness and the length of the mycolic acids

PorH, a new channel-forming protein present in the cell wall of *Corynebacterium efficiens* and *Corynebacterium* callunae

- Hünten et al, 2005 -

Tricine (10%) SDS-PAGE of the *C. callunae* and *C. efficiens* PorH purification procedure

Department of Biotechnology

→ Existence of a 6kDa protein after purification by FPLC

Julius-Maximilians-

Biozentrum

Department of Biotechnology Biozentrum Histograms observed in the presence of pure

cell-wall proteins of C. callunae and C. efficiens

ulius-Maximilians-LINIVERSITÄT

WÜRZBURG

 $G(PorH_{Ccall}) = 3nS in 1M KCl$

 \rightarrow voltage-dependent closure for voltages higher than 30-40mV

G (PorH_{Ceff}) = 2,3nS or 4,7nS in 1M KCl

 \rightarrow reconstitution of 2 channels at once

Average single-channel conductance G of $PorH_{C.call}$ and $PorH_{C.eff}$ in different salt solutions

Salt	Concentration (M)	PorH _{C.call} G (nS)	$PorH_{C.eff} G (nS)$
LiCl	1.0	1.25	1.50
NaCl	1.0	1.75	NM
KCl	0.01	NM	0.025
KCl	0.03	0.35	0.075
KCl	0.1	0.55	0.45
KCl	0.3	1.10	0.70
KCl	1.0	3.0	2.3
KCl	3.0	7.0	6.5
RbCl	1.0	3.0	NM
N(CH ₃) ₄ Cl	1.0	1.0	1.8
N(C ₂ H ₅) ₄ Cl	1.0	0.70	1.7
KCH ₃ COO (pH 7)	$1 \cdot 0$	2.0	1.0

- no linearity between conductance and salt-concentrations \rightarrow point net charges
- PorH_{Ccall}: higher cation-influence, $V_m = 28mV$, $P_{cat}/P_{an} = 7 \rightarrow$ highly cation-selective
- PorH_{Ceff}: higher anion-influence, $V_m = -6mV$, $P_{cat}/P_{an} = 0,7 \rightarrow slightly anion-selective$

Julius-Maximilians-

Biozentrum

RZBURG

Comparison of aa-sequences/ overview of the *porH* gene locus within the *C.efficiens* genome

- *porH_{Ceff}*: 174bp encoding a 57aa long acidic polypeptide (6-/2+) no leader sequence → no Sec-system slightly anion-selective
- $porH_{Ccall}$: high homology to $porH_{Ceff}$, also acidic (8-/2+) only separated to $porA_{Ccall}$ by 77bp without a transcription terminator

 \rightarrow different ion-selectivity caused by arrangement in the channel-forming unit?

Biozentrum

Single-channel conductance of PorH_{C.call} as a function of the KCI concentration

Department of Biotechnology

• best fit for d = 2,2nm and 1,6 negative charges (q = $-2,4*10^{-19}$ As)

• remember: $PorA_{Calut}$ controlled by 2 negative charges (q = -3,2*10⁻¹⁹As)

Julius-Maximilians-

Biozentrum

URZBURG

Schematic prediction of the secondary structures of PorH

• heptamers of amphipathic α -helices with about 8 windings and a length of 4,2nm

- remember: ß-strands in MspA of Mycobacterium smegmatis
- charges in agreement with the ion-selectivity

ulius-Maximilians-

Biozentrum

RZBURG

 \rightarrow smaller peptides arranged as α -helices sufficient to span the mycolic acid layer of *C.g.*

Summary

- PorH_{Ccall} (highly cation-selective) and PorH_{Ceff} (slightly anion-selective) show different ion-selectivity caused by different arrangements
- defined channels of 2nS to 3nS in 1M KCI
- no Sec-system for transport out of the cell wall
- *porH_{Ccall}* and *porH_{Ceff}* highly homologous
- genes coding for PorA and PorH only separated by some bp without transcription terminator between them

Identification and characterization of PorH, a new cell wall channel of *Corynebacterium* glutamicum

- Hünten et al, 2005 -

12% tricine SDS-PAGE of the purification procedure of PorH_{C.glut}

→ pure 12kDa-protein named PorH_{Calut}

Julius-Maximilians-

Biozentrum

Single-channel recording and histogram in the presence of pure 12kDA protein (PorH_{Cglut})

• main conductance of G = 2,5nS in 1M KCI

• minor fraction with lower conductance

Julius-Maximilians-

Biozentrum

RZBURG

Average single-channel conductance G of PorH_{C.glut} in different salt solutions

Salt	Concentration c (M)	Single-channel conductance G (nS)
LiCl	1.0	1.0
KCl	0.01	0.15
	0.03	0.35
	0.1	0.4
	0.3	0.9
	1.0	2.5
	3.0	7.0
KCH ₃ COO (pH 7)	1.0	1.5

- higher cation-influence \rightarrow cation-selectivity
- no linearity \rightarrow point net charges

Biozentrum

RZBURG

• zero current membrane potential V_m of +25mV \rightarrow cation-selectivity

• $P_{cat}/P_{an} = 5,1 \rightarrow$ anions have certain permeability

Comparison of the amino acid sequences of PorH_{C.glut} and PorH_{C.eff}

- partial sequencing: 13aa stretch as a part of a 57aa long hypothetical protein encoded by $porH_{Calut}$ (174bp); highly homologous
- total mass: 6,1kDa \rightarrow formation of dimers

Julius-Maximilians-

Biozentrum

WÜRZBURG

negative charges in agreement with cation-selectivity

Overview of the *porH*_{C.glut} gene locus and results of RT-PCR

Julius-Maximilians-

Biozentrum

WÜRZBURG

200-

- porA and porH only separated by 83bp without transcription terminator
- amplification with the primers
- → porA and porH part of transcriptional unit of 13 genes

Western-Blot analysis of PorH_{C.glut} using anti-PorH_{C.glut} antibodies

Biozentrum

Julius-Maximilians-

WÜRZBURG

supernatant of 2% LDAO
supernatant of 2% LDAO (boiled)
supernatant of 8M Urea (boiled)
precipitated pellet (boiled)

 \rightarrow search for oligomers

 LDAO-extraction: formation of oligomers (hexamers) resistant to 5min boiling

Department of Biotechnology

Urea/organic-solvent: oligomers destroyed
(mono-/dimers)

Electron micrograph of *C. glutamicum* cells, treated with several antibodies

- all channels are present in the channel at the same time
- → coexistence of all 4 channel PorA, PorB, PorC and PorH in *C. glutamicum*

Julius-Maximilians-

Biozentrum

Summary

• coexistence of 4 channel-forming proteins in *Corynebacterium glutamicum*

1) PorA: 45aa long polypeptide cation-selective channel formed by an oligomer; G = 5,5nS in 1M KCl

2) PorB: 99aa long polypeptide anion-selective channel; G = 700pS in 1M KCI channel can be blocked by citrate

3) PorC: PorB-like protein located 138bp downstream from *porB porB* and *porC* belong to same cluster and are cotranscribed

 4) PorH: 57aa long polypeptide cation-selective channel; G = 2,5nS in 1M KCl *porH* located next to *porA*; both are cotranscribed