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Introduction

Introduction

Experimental situation

o Effectively one-dimensional system can be realized
experimentally

@ Number of electrons can be controled in these gated
semiconductor heterostructures

@ Allows to study many-body effects (electronic interaction) in
these systems

| \

Low-density limit: Wigner crystal
@ For very low densities: Coulomb energy dominates the system

@ Localization of electrons as an electron crystal: Wigner crystal
v

Search a measure for the localization of an electronic state
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Localization criteria

Indirect localization criteria

Spatial extension of the wave function

Inverse participation number is a measure of the region in space
where the wave function significantly differs from zero

@ Inverse participation number of a single particle state
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@ Generalization for Density Functional Theory
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The larger the inverse participation number, the more localized is
the state




Localization criteria

Indirect localization criteria

Curvature of the ground-state energy

@ Idea: Extended (delocalized) state is sensitive for the boundary
conditions in a large system, a localized state not

@ How does the ground state energy change as a function of the
boundary conditions?
@ Consider the curvature of the ground state energy with respect
to the boundary conditions:
o Extended system — sensitive to the boundary conditions —
large value for the curvature
o Localized system — insensitive to the boundary conditions —
small value for the curvature




Localization criteria

Direct localization criterion: current

Persistent current of a delocalized system

@ Non-interacting particles: total current is a sum of the
currents of individual particles

(

@ Interacting particles in a clean sample behave as
non-interacring particles concerning the persistent current

(




Localization criteria

Direct localization criterion: current

Persistent current of a localized system

@ Single particle in a system with impurity: Current dictated by
single particle tunneling
AT

@ Interacting particles: Correlated system tunnels as a whole

(

@ This means: persistent current is suppressed by the interaction




1D Wigner crystal

One-dimensional Wigner crystal

One-dimensional electron gas
@ Kinetic energy per particle

T L [k p2k?

Wigner transition at a critical density

@ High density: Free electron gas-like behaviour since T > V

@ Low density: Localization of electrons since V >> T




1D Wigner crystal

Stability of a 1D Wigner crystal

Quantum fluctuations

o Consider a 1D Wigner crystal as a chain of electrons
connected by springs

@ Quantum mechanical zero-point oscillations of the normal
modes of this chain lead to fluctuating displacements of the
electrons

@ Long wavelength fluctuations (small k) lead to a divergency of
the expectation value of the squared displacement

@ Should be no crystalline order in 1D




1D Wigner crystal

Stability of a 1D Wigner crystal

@ Idea: Pinning potential suppresses long wavelength modes
(soft modes) by creating a node for these modes at the
impurity potential site?
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@ No divergency of the fluctuations = 1D Wigner crystal
stabilized

?L.1.Glazman et.al., Phys.Rev.B 45, 8454 (1992)




Model and Method
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One-dimensional quantum ring

One-dimensional N-particle

system of length L with periodic
boundary conditions
A

Hamiltonian

L d 2
H = ; [2m* <—Ith' — 6A> + Vimp(Xi)

with

@ Vector potential A = % induces a persistent current

o Gaussian impurity Vimp pins the Wigner crystal




Model and Method
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One-dimensional Wigner-Seitz radius rg

Ratio between Coulomb and kinetic energy: <<‘;.C>>:
1 : :
rg x —— (dimensionless parameter)?
N dB
with the Bohr radius
e eh?
B mge?

In GaAs (e = 12.5, m§ = 0.0665m): ap = 9.95-10~°m

?Markus Hofmann, PhD thesis, Universitdt Erlangen-Niirnberg (2005)

Changing rs from rg < 1 to rg > 1, the system should undergo a
Wigner transition




Model and Method
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How to change rg?
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e Changing the number of particles:
Would change Fermi-level and hence the current (no
interaction effect)

@ Changing the system size:
Comparison of x-dependent quantities (e.g. density, ELF etc.)
between systems of different sizes difficult

@ Solution: Change Bohr radius by changing the effective
electron mass ?

?Markus Hofmann, PhD thesis, Universitdt Erlangen-Niirnberg (2005)




Model and Method
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Directly change <<‘;.C>> by changing the effective electron mass:

o replace “true” effective electron mass mg by a fictitious one m
in the kinetic energy operator

*

@ renormalize the impurity potential Vi, — \/imp%
o calculate all observables (especially current density) using the
true effective electron mass mg
= persistent current of a system of non-interacting electrons
independent of rg




Model and Method
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Density Functional Theory

How to solve the interacting problem with impurity? J

Density Functional Theory

@ One-to-one correspondence between external potential and
electronic density

o All observables are functionals of the density

@ How to use this: Construct a non-interacting system in some
effective potential that gives the same density




Model and Method
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Current Density Functional Theory

DFT with gauge field

@ Ordinary DFT: basic variable n(7)
o Kohn-Sham orbitals give (in principle) exact density of the
interacting system
o Not guaranteed that current density of the KS-System
coincides with the current density of the interacting system

@ Current Density Functional Theory: basic variable n(7) and
Jo(7)
SE

o In addition to vy = 5= an xc vector potential A,. = Exe

o

enters the KS-equation
o KS-orbitals yield exact density and current density




Model and Method
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Current Density Functional Theory

Gauge invariance of the xc-functional

@ Total energy has to be gauge invariant, but paramagnetic
current density j, is not:

P) = Jo(7) + —n(FVA(P)

@ Ey and E.y are gauge invariant

o Gauge transformation for the non-interacting functional:

Teln, 2] = Tsln, Jp]+e/drjp JVA(F) +/drn ) IVAGF)

@ Same transformation holds for the interacting functional,
hence E,. has to be gauge invariant

@ E,. depends on V=V x % rather than on J_';) directly
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Current Density Functional Theory

Local approximation

-

@ Local approximation of the xc-functional in the variable V x %
leads to xc-vector potential @

-

1
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@ This vanishes for strictly 1D systems
@ Physical reason:
e xc-vector potential describes distortion of the wave function in
the presence of currents

e in strictly 1D systems any distortion is purely longitudinal, only
changing the density

?G.Vignale and M.Rasolt, Phys.Rev.B 37, 10685 (1988)
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Kohn-Sham equations

Kohn-Sham system

A non-interacting system in some effective potential that produces
the same density

i = EiPi

1 ( . d 2
i —Iha — €A | + Vimp + VH + Ve

with
o electrostatic Hartree potential vy

@ exchange-correlation potential vy contains all many-body
quantum effects
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Approximate xc-functional

Local density approximation

@ l|dea: treat the inhomogeneous system locally as a
homogeneous one

@ xc-energy of the inhomogeneous system is a sum (integral) of
all the contributions from different points of the system:

Ecln(?)] = [ d7n(Pesc(n(?))

Optimized Effective Potential

@ Minimize the xc-energy not with respect to the density but
with respect to the KS-orbitals

e OEP potential is an explicit functional of the KS-orbitals

o Correct % dependency of the xc-potential for r — oo
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Representation of the wave functions

Spline represention

@ Expansion in a set of basis functions:

pilx) = albu(x)

@ Chose a localized spline basis ?

02 N2 Nl Ny Ngrl N2 o
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?Markus Hofmann, PhD thesis, Universitdt Erlangen-Niirnberg (2005)
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Kohn-Sham equation in the spline basis

Generalized eigenvalue problem

@ Matrix representation of the KS-Hamiltonian

Hyy = (bulFlics|b,) = / dx by,(x) sy ()

@ Non-zero overlap of different basis functions leads to overlap
matrix

Sy = /_: dx b, (x)b,(x)

@ Matrix representation of the Kohn-Sham equation

Z Higa(yi) = &g Z S 7,,a(y")

v
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Self-consistent solution of the KS-equation

Single iteration cycle

o Decompostion of the overlap matrix 5 = LL7T leads to a
standard eigenvalue problem

[ A (L) 7] (L780) = (£730)

o Matrix [IA_*ll:IKS(ZT)*l] is numerically diagonalized

o Resulting eigenvector (LT3()) is transformed back to &/

o 3U) represents the eigenstates of the Hamiltonian Fxs
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Self-consistent solution of the KS-equation

Self-consistent scheme

@ Start with a non-interacting system: vy = 0 and vy =0
@ Solve KS-equations = density n(x)
@ Calculate Hartree- and xc-potential from the density

@ Solve KS-equation with new vy and vy,

Convergence criterion:

max el _ D) - 10710mev

i i
i
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Persistent current

Calculation of the current density

e Paramagnetic current density of a state |¢;)

1900 = =5 (1500 — i) 00))

2myg

o Diamagnetic current density

o Total current density

J(X) Z.Ip +Jd(X
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Persistent current

What has been done

Persistent current has been calculated at 0.3 of the flux quantum
for

@ several values of rg

o different impurity potential strengths

Computational parameters

@ System size L = 200nm

@ 540 basis functions

o Typically between 100 (far from the transition point) and
10000 (close to the transition point) iterations for full
convergence required
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Persistent current

Persistent current as a function
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relative persistent current
=
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Colors indicate (unrenormalized) pinning potential strength: black
Vo = 0.001meV, blue Vo = 1.0meV, green Vy = 5.0meV, light blue
Vo = 10.0meV; red dashed line: nonineracting system with

Vo = 0.001meV
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Persistent current as a function of rg

Very weak impurity potential

g
a
2

Very weak impurity (on the scale of the internal energy of the
crystal &~ 2 — 5meV):
@ rg < r§: persistent current independent of rg
@ rg > r§: persistent current decays exponentially with
increasing rg

o Interpretation: Wigner crystal transition at r§ ~ 2.05 (2D:
r$ ~ 37 £ 5)7

?B.Tanatar and C.M.Ceperly, Phys.Rev.B 39, 5005 (1989)
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Persistent current as a function of rg

Non-vanishing impurity

relative persistent current

For stronger impurity:
@ Transition shifted to smaller rq and smoothed

@ Even for very small rg no electron-gas like behaviour:
No range where the persistent current is independent of rg
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Total energy curvature as a localization criterion

Relative curvature of the ground state energy as a function of rg @

o Localization for rg > r§
@ Critical value of rg strongly depends on disorder

@ Transition point consistent with results from calculation of the
persistent current

?Markus Hofmann, PhD thesis, Universitdt Erlangen-Niirnberg (2005)
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Summary and Outlook

What has been done

@ Electron-electron interactions may drastically change the
persistent current in a one-dimensional ring

@ Interpretation: Formation and pinning of a Wigner crystal
phase at rq ~ 2.05

@ Form of the transition depends on the strength of the pinning
potential:

e Very weak pinning potential leads to a sharp transition
o Stronger (but still weak) pinning potentials lead to a smooth
transition

@ Study the dependence of the Wigner crystal transition on the
shape and width of the pinning potential

@ Extension to two-dimensional rings




	Introduction
	Localization criteria
	1D Wigner crystal
	Model and Method
	Model
	Computational Method

	Persistent current
	Definition and computational settings
	Results

	Summary and Outlook

