Autoemitters and sensors based on CNT experimental researches. Georg Petruhin

MIET

## Agenda

#### Growth mechanism

- metal film melting and correlation of its thickness with CNT diameters
- growth modes

#### Experimental conditions and methods

- growing plant
- measurement stand
- Experimental results
  - Tables with emission parameters
  - Tables with emission current degradation parameters
- Analysis of obtained results
  - Emission current noise problem
  - The way to solve noise problem (lateral autoemitter construction)
  - Emission current degradation problem
- Conclusion





a)

b)

The catalyst after annealing in hydrogen plasma. Nickel layer thickness a)  $\sim$ 100 nm, b)  $\sim$ 20 nm.



High resolution transmission electron microscopy images of several SWNTs grown from ironbased nanoparticles by CCVD method, showing that particle sizes determine SWNT diameters in that case.





Guidelines indicating the relationships between possible carbon nanofilament morphologies and some basic synthesis conditions

|                                           |         | Incr                                             | ture<br>yst            | Subs                                                                                | trate                             | Thermal<br>gradient |                |                 |
|-------------------------------------------|---------|--------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|-----------------------------------|---------------------|----------------|-----------------|
|                                           |         | Solid<br>(crystallized)                          | Liquid from<br>melting | Liquid from<br>clusters                                                             | Yes No                            |                     | Low            | High            |
| Catalyst<br>particle<br>size              | <~ 3 nm | SWNT<br>MWNT<br>(c,h,b)<br>platelet<br>nanofiber | SWNT<br>c-MWNT         | ?<br>SWNT                                                                           | base-<br>growth<br>tip-<br>growth | tip-<br>growth      | long<br>length | short<br>length |
| Nanotube<br>diameter<br>Nanotube/particle |         | (heterog<br>related to cat<br>siz<br>one nanotu  | alyst particle         | homogeneous<br>(independent)<br>from particle<br>size)<br>several<br>SWNTs/particle |                                   |                     |                |                 |



(a) Mechanism proposed for SWNT growth. (b) Transmission electron microscopy image of SWNT growing radial to a large Ni catalyst particle surface in the electric arc experiment.

Video file. Nanotube or nanofilament growth.



## Growth modes.

- "Low temperature" mode, in which carbon-bearing gas is injecting into the chamber previously heated up to the 530 degrees centigrade. The additional heating is not carrying out.
- "High temperature" mode, which concludes in that the work chamber heating up to the 580 degrees centigrade and higher. And additional heating is carrying out after the working gas has been injecting, to compensate its cooling effect.

## Growing plant

- Chamber with forvacuum eviction ability
- Working gas injection system
- UHF plasma
- Substrate: silicon, sapphire, polikor
- Catalyst: nickel
- Buffer layers: titanium, vanadium

A fragment of the measurement stand (vacuum system, the management block).



## Autoemission parameters measured

- threshold voltage Ethv (given in the tables in corrected to the micrometers value)
- threshold current Ithv(the starting autoemission current)
- maximum emission current Imax
- medium emission current Imed (current that suites to the stable emission current)

#### The best values of autoemission parameters are represented

| Nº     | structure               | T (°C)    | t (min) | Pressure (atm.) | resume                                                                          |
|--------|-------------------------|-----------|---------|-----------------|---------------------------------------------------------------------------------|
| К13    | Ni on polikor           | 600       | 20      | 0.3 -0.5        | E <sub>thv</sub> =3,5 V/μm ;<br>I <sub>max</sub> =50μA                          |
| K15(2) | Ni(15) on polikor       | 433 - 532 | 20      | 0.9 -0.7        | $E_{nop} = 4,24 \text{ V/}\mu\text{m}$ $I_{max} = 31\mu\text{A}$                |
| K17    | Ni(30)V(20)Ti(40) on Si | 485-531   | 20      | 0.9 -0.8        | E <sub>thv</sub> =3,03 V/μm;<br>I <sub>max</sub> =25μA                          |
| K18    | Ni(30)V(20)Ti(40) on Si | 474-532   | 40      | 0.8             | $E_{nop}=2,2 \text{ V/}\mu\text{m}$ $I_{max}=22\mu\text{A}$                     |
| К19    | Ni(30) Ti(40) on Si     | 485-532   | 40      | 0.7             | E <sub>nop</sub> =3,67 V/μm<br>I <sub>max</sub> =23,5μA                         |
| К23    | Ni on sapphire          | 649-614   | 15      | 0.9             | E <sub>nop</sub> =1,54 V/μm<br>I <sub>max</sub> =6,5μA                          |
| K28(1) | Ni(40)V(20)Ti(30) on Si | 531       | 60      | 0.7             | $E_{nop} = 3,23 \text{ V/}\mu\text{m}$ $I_{max} = 10\mu\text{A}$                |
| К32    | Ni(30) Ti(40) on Si     | 625       | 10      | 0.9             | $E_{\text{nop}} = 10,75 \text{ V/}\mu\text{m}$ $I_{\text{max}} = 40\mu\text{A}$ |

#### Here are the worst emission parameters for compare

| N⁰     | structure                | T ( <sup>0</sup> C) | t (min) | Pressure<br>(atm.) | resume                                                                                             |
|--------|--------------------------|---------------------|---------|--------------------|----------------------------------------------------------------------------------------------------|
| К5     | Ni(30)V(20)Ti(40) on Si  | 628606              | 3       | 0,9                | no emission                                                                                        |
| К14    | Ni on polikor            | 450 - 550           |         |                    | no emission                                                                                        |
| К21    | Ni(30) V(20)Ti(40) on Si | 660-648             | 20      | 0,9                | no emission                                                                                        |
| К22    | Ni on sapphire           | 649-626             | 20      | 0,85               | no emission                                                                                        |
| К25    | Ni on Si                 | 649-623             | 5       | 0.94               | $E_{thv} = 8,29 \text{ V/}\mu\text{m},$<br>$I_{thv} = 200\text{nA}$<br>$I_{max} = 0,7 \mu\text{A}$ |
| K27(1) | Ni V on Si               | 542-507             | 60      | 0.8                | no emission                                                                                        |
| K29(1) | Ni on Si                 | 531                 | 20      | 0.9                | no emission                                                                                        |
| K29(2) | Ni on Si                 | 531                 | 20      | 0.9                | $E_{thv} = 18 \text{ V/}\mu\text{m},$ $I_{thv} = 7nA$ $I_{max} = 8 \mu\text{A}$                    |
| К34    | Ni(30)V(20)Ti(40) on Si  | 590                 | 20      | 0.9                | no emission                                                                                        |

#### Medium voltage and current values

| N₂     | structure               | T (°C)    | t (min) | Pressure (atm.) | resume                                                                                                                   |
|--------|-------------------------|-----------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| K15(1) | Ni(15) on polikor       | 433 - 532 | 20      | 0.9             | $E_{thv} = 3,92 \text{ V/}\mu\text{m}$ $I_{thv}=60\text{nA}$ $I_{max} = 18 \mu\text{A}$ $I_{med} = 8 \mu\text{A}$        |
| K16    | Ni(30)Ti(40) on Si      | 485-520   | 10      | 0.8 - 0.9       | $E_{thv}=5,58 \text{ V/}\mu\text{m};$ $I_{thv}=363\text{nA}$ $I_{max}=15 \mu\text{A},$ $I_{med}=7 \mu\text{A}$           |
| К20    | Ni(30)Ti(40) on Si      | 648-660   | 20      | 0.9             | $\begin{array}{c} E_{thv}{=}5,31\ V/\mu m;\\ I_{thv}{=}425nA\\ I_{max}{=}0,8\ \mu A,\\ I_{med}{=}0,4\ \mu A \end{array}$ |
| K24    | Ni on Si                | 649-614   | 10      | 0.9             | $E_{thv}=4,44 \text{ V/}\mu\text{m};$ $I_{thv}=333n\text{A}$ $I_{max}=5 \mu\text{A},$ $I_{med}=2 \mu\text{A}$            |
| K26(2) | Ni(30)V(20)Ti(40) on Si | 543-508   | 20      | 0.8             | $E_{thv}=4,53 \text{ V/}\mu\text{m};$ $I_{thv}=400\text{nA}$ $I_{max}=10 \mu\text{A},$ $I_{med}=2 \mu\text{A}$           |
| K27(2) | Ni(30)V(20)Ti(40) on Si | 542-507   | 60      | 0.8             | $\begin{array}{l} E_{thv} = 8 \ V/\mu m; \\ I_{thv} = 300 nA \\ I_{max} = 9 \ \mu A, \\ I_{med} = 5 \ \mu A \end{array}$ |
| K30(2) | Ni on Si                | 590       | 15      | 0.9             | $E_{thv}=11,68 V/\mu m;$ $I_{thv}=120nA$ $I_{max}=7 \mu A,$ $I_{med}=3 \mu A$                                            |
| К33    | Ni(30)Ti(40) on Si      | 590       | 20      | 0.9             | $E_{thv}=9,25 \text{ V/}\mu\text{m};$ $I_{thv}=15\text{nA}$ $I_{max}=15 \mu\text{A},$ $I_{med}=5 \mu\text{A}$            |

## Emission current noise problem

I, nA



 $\mathsf{U},\mathsf{V}$ 

# The way to solve noise problem (lateral autoemitter construction)





#### Table with emission current degradation parameters

| N⁰     | U, V | I, µA (before) | $\Delta t$ , min | I, µA (after) | Uthv, V/µm | Imax, μA |
|--------|------|----------------|------------------|---------------|------------|----------|
| K15(2) | 319  | 1,6 - 2,1      | 5                | 0,8 - 0,9     | 4,24       | 31       |
|        |      |                |                  |               |            |          |
|        | 791  | 28 - 31        | 3                | 0,00015       |            |          |
| К18    | 299  | 0,8 - 1,4      | 2                | 0,5 - 0,8     | 2,2        | 22       |
|        |      |                |                  |               |            |          |
|        | 750  | 7,0 - 15,0     | 2                | 5,0 - 10,0    |            |          |
| К19    | 502  | 18 - 18,5      | 30               | 23,0 - 22,0   | 3,67       | 23,5     |
|        |      |                |                  |               |            |          |
| К23    | 284  | 6,0 - 6,5      | 17               | 1,2 - 1,6     | 1,54       |          |
|        |      |                |                  |               |            |          |
|        | 320  | 3,4            | 6                | 3,4           |            |          |
| K28(1) | 328  | 2,5 - 3,0      | 5                | 1             | 3,23       | 10       |
|        |      |                |                  |               |            |          |
|        | 427  | 5,0 - 6,0      | 5                | 5,0 - 5,5     |            |          |
|        |      |                |                  |               |            |          |
|        | 489  | 10             | 2                | 0,5           |            |          |
| К32    | 473  | 2,5 - 3,5      | 2                | 1,5 - 2       | 10,75      | 40       |
|        |      |                |                  |               |            |          |
|        | 701  | 20 - 25        | 15               | 18 - 21       |            |          |
|        |      |                |                  |               |            |          |
|        | 782  | 25 - 27        | 10               | 13 - 14       |            |          |

#### Table with emission current degradation parameters

| N⁰     | U, V | I, µA (before) | $\Delta t$ , min | I, µA (after) | $E_{thv}, V/\mu m$ | I <sub>max</sub> , μA |
|--------|------|----------------|------------------|---------------|--------------------|-----------------------|
| К15(1) | 465  | 10,0 - 11,0    | 5                | 8             | 3,92               | 18                    |
| К24    | 485  | 3              | 5                | 2             | 4,44               | 5                     |
|        |      |                |                  |               |                    |                       |
|        | 570  | 2,5            | 10               | 1,3           |                    |                       |
| K26(2) | 284  | 7.0            | 10               | 7.0           | 4,53               | 10                    |
|        |      |                |                  |               |                    |                       |
|        | 476  | 3,0 - 3,2      | 2                | 1,8 - 2,0     |                    |                       |
| K27(2) | 414  | 2,2 - 2,5      | 5                | 2,2 - 2,5     | 8                  | 9                     |
|        |      |                |                  |               |                    |                       |
|        | 492  | 8,0 - 9,0      | 30               | 5             |                    |                       |
| K30(2) | 657  | 3              | 3                | 7             | 11,68              | 7                     |
|        |      |                |                  |               |                    |                       |
|        | 659  | 7              | 60               | 0,3           |                    |                       |
| К33    | 400  | 6,5 - 7        | 60               | 5 - 5,5       | 9,25               | 15                    |
|        |      |                |                  |               |                    |                       |
|        | 480  | 15             | 2                | 2             |                    |                       |

## Nanotubes degradation



### Degradation of autoemitters





## Conclusion

Two main problems (emission current noise and degradation) that was revealed during this work are related with technical realization. And the way to solve this problems is to improve technical equipment that we use and control each step and each parameter of the process from the beginning to the end.