

Implementation of a Backprojection
Algorithm on CELL

Moscow-Bavarian Joint Advanced Student School 2006
March 19 2006 to March 29 2006

Mario Koerner

Overview
● Practical implementation of 3D Backprojection

● Porting Backprojection to CELL

● Optimize backprojection for the CELL

● Optimization on SPU level

● Optimization of the data transfer

● Optimization of subvolume scheduling

3D Backprojection
Reminder: the Feldkamp algorithm

Input: 2D Projection matrices and acquisition parameters

Step 1: Perform a proper weighting of projection images

Step 2: Filter the projection images along horizontal lines

Step 3: Perform a weighted backprojection along the projection rays

Initialize the reconstruction volume with zero

For all projections , j=1...N
For all voxels , i=1...M

Compute the coordinates of voxel in projection

Get the projection value at this position

Accumulate the weighted value to the reconstruction volume

P j

P j

v i

v ip ij

Computation of projection
coordinates

● The mapping between a voxel in the reconstruction volume and the corresponding pixel
 in the projection image is a central perspective projection

● It can be written as a linear mapping using homogeneous coordinates

Optical
center

voxel v i
pixel p ij

rst=a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34
 xyz1

● The acquisition parameters are defined using this projection matrix

Computation of projection
coordinates

● The columns of the projection matrix may be interpreted as incremental updates when
 navigating through the volume in x/y/z direction

rst=a11

a21

a31
 xa12

a22

a32
 ya13

a23

a33
za14

a24

a34


● E.g. For navigation from voxel (x, y, z) to voxel (x, y+1, z), we have

rst '=
r
s
t a12

a22

a32


● The last column describes the „cube suspension“, i.e. the pixel, where voxel (0,0,0) is
 mapped to

● A division is required for computing the cartesian coordinates of the projection pixel

p ij=x ij , yij 
T=

rij
tij
,
sij
tij


Retrieving projection values
● Because the projection images are measured as discrete functions, the computed
 coordinates may not correspond to a value in the data set.

● Use the „Nearest Neighbour“ approach

● Use bilinear interpolation

a b

c d

e

dx

dy

e=1−dx1−dy a1−dxdycdx1−dybdx dy d

Computing weights for the BP
● In the Feldkamp algorithm, each voxel is weighted during the backprojection with

1
U 2 with U x , y , =Dx sin − y cos

D
=

sin
D

x− cos
D

y1

● U can also be computed using incremental updates
● The increments can be found in the projection matrix

x

y

β

The fan can be rotated and shifted such that the
central ray coincides with the y-axis and the source
lies in the center of the coordinate system:

R=cos −  −sin −  0 0
sin −  cos −  0 −D

0 0 1 0
0 0 0 1


Virtual detector
plane

Computing weights for the BP
● On the transformed fan position, we can apply the projection matrix

P=D 0 0 0
0 0 D 0
0 −1 0 0

● The multiplication of both matrices gives

P R=D cos  Dsin  0 0
0 0 D 0

sin −cos 0 D
● and can be normalized to

P R
D

=cos  sin  0 0
0 0 1 0

sin
D

−cos 
D

0 1
● So the weighting factor U for the backprojection is equal to the third homogeneous
 coordinate t. This saves one division for the backprojection.

Overview
● Practical implementation of 3D Backprojection

● Porting Backprojection to CELL

● Optimize backprojection for the CELL

● Optimization on SPU level

● Optimization of the data transfer

● Optimization of subvolume scheduling

Porting Backprojection to CELL
● The Backprojection algorithm needs to handle huge amounts of data:

Volume: 512 x 512 x 512 voxels, 32 bit floating point numbers
--> 512 MB

Projections: 500 Projections, 1024 x 1024 Pixels, 32 bit floating point numbers
--> 2 GB

● The data must be partitioned into chunks that fit into the 256K local store of the SPUs

● Data Partitioning for the backprojection algorithm is easy, since all voxels in the
 reconstructed volume and all projections can be considered independently.

● Because we sample in the space of the output by projecting voxels into projection images,
 it is intuitive to split the volume first and compute the areas of the projections required by
 these subvolumes.

Projection shadows
● To compute the increments for a subvolume from a specific projection, only a small sector
 of the projection image is required

● This can be computed by projecting all 8 corners of the subvolume into the image plane
 and getting the bounding box of them

● The lines of the image section must be aligned by 16 bytes (4 pixels) and have a length
 of a multiple of 16 bytes, so that they can be transfered by the DMA controller.

Work partitioning between PPU and
SPUs

● Basic reconstruction task consists of:

● A section of the reconstruction volume
● The shadow of this volume in one projection image

● In a PPU centric implementation, the PPU is responsible for

● Performing all I/O operations for loading and storing data
● Do the scheduling (when a task is to be computed)
● Do the placing (where a task is to be computed)
● Avoid conflicts (2 SPUs writing to the same subvolume at the same time)
● Compute the projection shadows

● The SPUs

● Load the data required for the basic reconstruction task
● Perform the actual backprojection
● Write the results back to main memory

● Basic reconstruction tasks are posted to the SPUs through their mailbox registers

First results
● The code generated by gcc for the backprojection function is highly inefficient:

Single cycle 200428 (34.4%)
Dual cycle 50813 (8.7%)
Nop cycle 4098 (0.7%)
Stall due to branch miss 13396 (2.3%)
Stall due to prefetch miss 0 (0.0%)
Stall due to dependency 313989 (53.8%)
Stall due to fp resource conflict 0 (0.0%)
Stall due to waiting for hint target 567 (0.1%)
Stall due to dp pipeline 0 (0.0%)
Channel stall cycle 0 (0.0%)
SPU Initialization cycle 0 (0.0%)
--
Total cycle 583291 (100.0%)

● The computation time for a 512 x 512 x 512 cube and 1 projection would be
 (on 1 SPU with 2.1 GHz)

T=5123

163
583291cycles

2.1GHz
=9.1 s

Overview
● Practical implementation of 3D Backprojection

● Porting Backprojection to CELL

● Optimize backprojection for the CELL

● Optimization on SPU level

● Optimization of the data transfer

● Optimization of subvolume scheduling

The inner loop of the BP
Initialize the reconstruction volume with zero

For all projections , j=1...N
For all voxels , i=1...M

Compute the coordinates of voxel in projection

Get the projection value at this position

Accumulate the weighted value to the reconstruction volume

P j

P j

v i

v ip ij

● Compute the homogeneous coordinates by adding the offset in x-direction

r += drx;
s += dsx;
t += dst;

3 adds per voxel
(float)

● Compute the cartesian coordinates by dehomogenisation

one_over_t = 1 / t;
x = r * one_over_t;
y = s * one_over_t;

1 division, 2 multiplications per voxel
(float)

The inner loop of the BP
Initialize the reconstruction volume with zero

For all projections , j=1...N
For all voxels , i=1...M

Compute the coordinates of voxel in projection

Get the projection value at this position

Accumulate the weighted value to the reconstruction volume

P j

P j

v i

v ip ij

● Compute the index of the voxel within the subimage

Index = SubSizeX * (x – FirstSubPixelX)
 + (y - FirstSubPixelY);

2 subs, 1 mult-add per voxel
(integer)

● Load the projection value from local store

Value = projection[index]; 1 memory access at a 4 byte aligned
location

The inner loop of the BP
Initialize the reconstruction volume with zero

For all projections , j=1...N
For all voxels , i=1...M

Compute the coordinates of voxel in projection

Get the projection value at this position

Accumulate the weighted value to the reconstruction volume

P j

P j

v i

v ip ij

● Compute weight for this pixel

W = one_over_t * one_over_t; 1 multiplication per voxel
(float)

● Load the projection value from local store

Volume[pos++] += W * Value; 1 multiply-add (float)
1 add (integer)

Vectorization
Initialize the reconstruction volume with zero

For all projections , j=1...N
For all voxels , i=1...M

Compute the coordinates of voxel in projection

Get the projection value at this position

Accumulate the weighted value to the reconstruction volume

P j

P j

v i

v ip ij

● Steps 1 and 3 can be vectorized by applying all operations to 4 voxels in parallel

● The memory access in step 2 cannot be vectorized, because the required pixels may not
 lie in the same row

It should be possible for the compiler to
schedule the required load and shuffle
instructions on the odd pipeline, while arithmetic
operations are running on the even pipeline.

Required operations per voxel
● Floating point arithmetics:

● 3 additions
● 1 division
● 3 multiplications
● 1 multiply-add

● Integer arithmetics:

● 3 addtions
● 1 multiply-add

● Problem: SPUs do not support exact division in hardware

● Hardware support for computing an estimate for the reciprocal of a floating point
number

● A SDK library function exists for performing IEEE compliant divisions
● A fast version of the library function exists that gives 32 bit float precision

Reciprocal estimate in hardware
● Uses the frest (floating reciprocal estimate) and fi (floating interpolate) instructions
 that are combined in the spu_re() intrinsic

● The resulting precision is 12 bit

● Result for performing 4 vector divisions:

 Single cycle 9 (56.2%)
 Dual cycle 4 (25.0%)
 Nop cycle 0 (0.0%)
 Stall due to branch miss 0 (0.0%)
 Stall due to prefetch miss 0 (0.0%)
 Stall due to dependency 3 (18.8%)
 Stall due to fp resource conflict 0 (0.0%)
 Stall due to waiting for hint target 0 (0.0%)
 Stall due to dp pipeline 0 (0.0%)
 Channel stall cycle 0 (0.0%)
 SPU Initialization cycle 0 (0.0%)
 --
 Total cycle 16 (100.0%)

(includes a multiplication in order to perform a real division)

IEEE division
● Uses the library function _divide_v() with the define IEEE_ACCURATE_DIVIDE
● Does a lot of checks and sets several bits from the IEEE specification (e.g. overflows)

● Result for performing 4 vector divisions:

 Single cycle 112 (93.3%)
 Dual cycle 7 (5.8%)
 Nop cycle 0 (0.0%)
 Stall due to branch miss 0 (0.0%)
 Stall due to prefetch miss 0 (0.0%)
 Stall due to dependency 1 (0.8%)
 Stall due to fp resource conflict 0 (0.0%)
 Stall due to waiting for hint target 0 (0.0%)
 Stall due to dp pipeline 0 (0.0%)
 Channel stall cycle 0 (0.0%)
 SPU Initialization cycle 0 (0.0%)
 --
 Total cycle 120 (100.0%)

Fast division
● Uses the library function _divide_v() without the define IEEE_ACCURATE_DIVIDE
● Adds 1 Newton iteration after performing the reciprocal estimate in hardware to increase
 the accuracy
● Result for performing 4 vector divisions:

 Single cycle 37 (77.1%)
 Dual cycle 0 (0.0%)
 Nop cycle 0 (0.0%)
 Stall due to branch miss 0 (0.0%)
 Stall due to prefetch miss 0 (0.0%)
 Stall due to dependency 11 (22.9%)
 Stall due to fp resource conflict 0 (0.0%)
 Stall due to waiting for hint target 0 (0.0%)
 Stall due to dp pipeline 0 (0.0%)
 Channel stall cycle 0 (0.0%)
 SPU Initialization cycle 0 (0.0%)
 --
 Total cycle 48 (100.0%)

Fast division – extra operations
● Using the fast division function from the SDK library requires the following additional
 operations:

● frest (floating reciprocal estimate) and fi (floating interpolate)

● 1 multiplication
● 2 negative vector multiply and subtract
● 1 multiply-add
● 1 add
● 1 vector compare
● 1 selection instruction (bitwise)

First optimization results
● Using vector instructions for the computational expensive parts, the SPU statistics are
 as follows:

Single cycle 53665 (35.3%)
Dual cycle 12658 (8.3%)
Nop cycle 2834 (1.9%)
Stall due to branch miss 14147 (9.3%)
Stall due to prefetch miss 3 (0.0%)
Stall due to dependency 66568 (43.7%)
Stall due to fp resource conflict 0 (0.0%)
Stall due to waiting for hint target 2312 (1.5%)
Stall due to dp pipeline 0 (0.0%)
Channel stall cycle 0 (0.0%)
SPU Initialization cycle 0 (0.0%)
--
Total cycle 152187 (100.0%)

● Speedup compared to the scalar version

T=5123

163
152187cycles

2.1GHz
=2.4 sSpeedup=583291

152187
=3.83

First optimization results
● Using vector instructions for the computational expensive parts, the SPU statistics are
 as follows:

Single cycle 53665 (35.3%)
Dual cycle 12658 (8.3%)
Nop cycle 2834 (1.9%)
Stall due to branch miss 14147 (9.3%)
Stall due to prefetch miss 3 (0.0%)
Stall due to dependency 66568 (43.7%)
Stall due to fp resource conflict 0 (0.0%)
Stall due to waiting for hint target 2312 (1.5%)
Stall due to dp pipeline 0 (0.0%)
Channel stall cycle 0 (0.0%)
SPU Initialization cycle 0 (0.0%)
--
Total cycle 152187 (100.0%)

● Speedup compared to the scalar version

T=5123

163
152187cycles

2.1GHz
=2.4 sSpeedup=583291

152187
=3.83

The dual issue rate is still very
low

It should be possible to reduce
dependency stalls using loop

unrolling.

Transforming the loops could improve
branch hint efficiency.

Conclusions
● The overall performance will be dominated by the computation time on the SPUs

● If the computation can be optimized by another factor of 5, we can backproject about 30
 projections per second on a 512 x 512 x 512 volume using 16 SPUs:

2.4 s
16⋅5

=
1

33.3
s

● The amount of data to be transferred in 1 second then is

x⋅2⋅512MB y⋅30⋅4MB

● E.g. if the volume data is loaded only once and each projection pixel must be loaded 32
 times

1⋅2⋅512MB32⋅30⋅4MB=4864MB

● Optimization of the SPU backprojection code and the code required to control the
 backprojection should have the highest priority for now.

Overview
● Practical implementation of 3D Backprojection

● Porting Backprojection to CELL

● Optimize backprojection for the CELL

● Optimization on SPU level

● Optimization of the data transfer

● Optimization of subvolume scheduling

Optimization of data transfer
● The DMA controllers of the MFCs on the SPEs allow overlapping of computation
 with communication using the 'double buffering' technique

● Projection data can be discarded after it was backprojected into the reconstruction
 volume

● Volume data has to be written back to main memory after the computation

● Two buffers are sufficient for the volume data, if the 'fenced' version of the
 get command is used

Buffer for
computation

Projection data:

Read next projection

Buffer for computation

Volume data:

Write last subvolume
Read next subvolume

● When using DMA lists for the transfer of volume data, at least 3 buffers for these
 DMA lists are required

Optimization of data transfer
● Transfer of small memory segments is very inefficient

0

10

20

30

40

50

60

16 128 256 512 1024 2048 4096 8192 16386
b l o c k s i z e (B y t e)

● Transfer of 50 GB of data

● Block size is the amount of data for one DMA

● This experiment used direct DMA commands (no DMA lists)

● Data rate: 22.7 GB per second

Optimization of data transfer
● This also holds for the transfer of subvolumes that are stored line by line

0

1

2

3

4

5

6

16x16x16 32x16x8 64x8x8 128x8x4

subvolume size (x,y,z)

tim
e

(s
ec

)

● This gives restrictions to the block shape that can be used for volume partitioning

● It may be better to store the volume in small blocks instead of lines and reorganize
 the data layout at the end of the computation

Overview
● Practical implementation of 3D Backprojection

● Porting Backprojection to CELL

● Optimize backprojection for the CELL

● Optimization on SPU level

● Optimization of the data transfer

● Optimization of subvolume scheduling

Projection shadows
● The size of the projection shadow depends on the shape of the subvolume

● The optimal subvolume shape also depends on the projection angle

Subvolume scheduling
● An optimal solution would

● Schedule (when?)
● Bind (where?)

the backprojection tasks in a way, that overall computation time is minimal

● If all tasks are approximately of the same size, load balancing is easy

● Therefore it should be sufficient to find an ordering that minimizes data transfers.

Pipelining
● If access to main memory becomes a bottleneck, data should held within the cell chip as
 long as possible

● One way for doing so: establish a pipeline from SPU to SPU and send projection data
 from stage to stage

SPU0 SPU6SPU4SPU2Main
Memory

● This requires distribution of a subvolume over the SPUs. The shadow of the complete
 subvolume must be small enough to fit into the spu.

References
[CBEA] Cell Broadband Engine Architecture. IBM Corporation, 2005

[CBETut] Cell Broadband Engine Programming Tutorial. IBM Corporation, 2005

[Kak] A. C. Kak and Malcolm Slaney, Principles of Computerized
Tomographic Imaging. Society of Industrial and Applied Mathematics,
2001

[Tur] Henrik Turbell, Cone-Beam Reconstruction using Filtered
Backprojection. Dissertation, Linköping Studies in Science and
Technology, 2001

