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Motivation Spiral-CT

Circular FBP is
limited in
z-direction

Constant
movement throw
the rotating
source

This results in a
helical movement
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Supposition

Physics

Fan-Beam-Geometry
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Overview helical reconstruction algorithms

exact reconstruction algorithms

Kudo et al. 1998
Tam et al. 2000
Schaller et al. 2000
Katsevich et al. 2002

approximative algorithms

Larson et al. 1998
Kachelriess et al. 200
Bruder et al. 2000
Schaller et al. 2001
Flohr et al. 2003
Stiersdorfer et al. 2004
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Challenges

computational complexity for exact algorithms is significantly higher

exact algorithms are not able to deal with redundant data

most approximative algorithms produces good images up to cone angle
of 3.2◦
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Goales for Stiersdorfer et al. 2002

A multislice spiral algorithm for medical applications should satisfy the
following criteria:

1 good image quality (clinical)

2 dose efficient

3 able to use variable pitch

4 capable to cope redudant or missing data

5 reconstruction time should be suitable for clinical needs

The segmented multiple plane reconstruction algorithm (SMPR) fulfils these
demands for cone angles up to 6.4◦, but is computationally not very effective.
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3D Weighted FBP

Weighted filtered backprojection (WFBP) published 2004 by
Karl Stiersdorfer, Annabella Rauscher, Jan Boese,
Herbert Bruder, Stefan Schaller and Thomas Flohr

Algorithm structure:

rebinning

filtering

weighted backprojection

B. Keck



9 / 19

3D Geometry (1)
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3D Geometry (2)
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3D Rebinning (1)

3D Rebinning is done
like 2D Rebinning, but
per detector row.

The picture shows
Azimuthal Rebinning.
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3D Rebinning (2)

The view parallel to the
horizontal rays shows
almost no error.

The sources are on the
helix shaped trajectory,
so the rays can’t be on
one plane.

The Virtual Detector is
in the background, the
sources are in the
foreground.

α

b

γ

B. Keck



13 / 19

3D Rebinning (3)

Looking parallel to the
rays through the lowest
row of the Virtual
Detector

The rays are not in a
plane, but are filtered
along this curve. That’s
why it’s called a
inexact reconstruction. α
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Filtering

Filtering is done in
row-direction

Each row of the
pseudo-parallel
projections is filtered
with a high-pass filter
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3D Backprojection (1)
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3D Backprojection (2)
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3D Backprojection (3)

Backprojection in principle the same:

Transform v = (x1,x2,z)T to rotated coordinate v ′ = (a1,a2,z)T

Calculate virtual source position sα(a2) through the voxel v ′

Interpolate corresponding projection value pα(a2,b)

Add up this value to voxel’s result
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3D Backprojection (4)

But pα(a2,b) is not add up directly,
it’s weighted by function wQ(q)
before.

q = 2b
hD

b is row component
hD hight of the detector
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Thank you for Attention

Any Questions?

B. Keck
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