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Overview

● 2D Fan Beam Reconstruction

● Shortscan Reconstruction

● 3D Cone Beam Reconstruction



  

Parallel vs. Fan-beam
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Measured projections:

P t  R  
(R is measured at equiangular intervals)



  

FBP for parallel projections
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f x , y =1
2 ∫0

2

∫
−tm

tm

P t hx cos  y sin−t dt d 

f r , =
1
2 ∫0

2

∫
−tm

t m

P t h r cos − −t dt d 

x=r cos
y=rsin

Polar coordinates:



  

Transformation to Fan-beam geom.
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Where can we find the data for this projection ray in the fan beam projection data?



  

Transformation to Fan-beam geom.
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Transformation between θ,t and β,γ can be described by

γ

β

.
t

=
t=D sin



  

Transformation of the FBP integral

f r ,=1
2∫0

2

∫
−tm

t m

P t h r cos − −t dt d 

=1
2 ∫

−

2−

∫
−sin−1 t m /D 

sin−1 tm /D 

P D sin  h r cos  − −Dsin  D cos d  d 

=
1
2 ∫0

2

∫
− m

 m

R  hr cos − −D sin D cos d  d 

=
t=D sin

dt d  =D cos d  d 



  

Transformation of the FBP integral

f r , =1
2∫0

2

∫
−tm

t m

P t h r cos − −t dt d 

=1
2 ∫

−

2−

∫
−sin−1 t m /D 

sin−1 tm /D 

P D sin  h r cos  − −Dsin  D cos d  d 

=1
2 ∫0

2

∫
− m

m

R  hr cos − −Dsin  D cos d  d 

Further simplification can be applied to the argument of the function h.

=
t=D sin

dt d =D cos d  d 



  

Transformation of the FBP integral

Consider a point C in polar coordinates

Lcos '=Drsin  − 

L sin '=r cos − 

r cos − −Dsin 

=rcos  − cos−[r sin − D ]sin

=L sin ' cos−L cos ' sin 

=L sin '− 

With L being the distance from C to the source S
and γ' being the angle of the projection ray C lies on(from  [Kak])



  

Transformation of the FBP integral

h(L sin γ) can be expressed in terms of h(γ):

h t =∫
−∞

∞

∣∣exp 2 i t d

h L sin  =∫
−∞

∞

∣∣exp2i L sin  d  Transformation:  '=L sin


=


L sin

2

∫
−∞

∞

∣ '∣exp 2 i '  d

=


L sin

2

h  = 2
L2

1
2



sin


2

h  

=: 2
L2 g  



  

Putting things together

f r , =1
2 ∫0

2

∫
−m

m

R  hr cos − −D sin  Dcos d  d 

=1
2 ∫0

2

∫
− m

m

R  hLsin  '− D cos d  d 

=∫
0

2
1
L2 ∫

−m

 m

R  g  '− D cos d  d 

=∫
0

2
1
L2 ∫

−m

 m

R'   g  '− d  d  Q  :=R'  ∗g  

R'  :=R D cos

=∫
0

2
1
L2 Q  ' d 



  

The algorithm

f r ,=∫
0

2
1
L2 ∫

−m

 m

R  D cos g  '− d  d 

Step 1: Preprocess each projection using R '  :=R D cos

Step 2: Convolve each projection with the impulse response

g  =1
2



sin 


2

h  

Step 3: Perform a weighted backprojection of each filtered projection along the fan,

Where L is the distance of a given point (r, Φ) from the source:

L r , , =[Drsin − ]2[rcos  − ]2

And γ' can be computed according to

 '=tan−1r cos − /Dr sin− 



  

Equally spaced collinear detector
So far: we used projection rays on equiangular intervals
Now: use equally spaced projections on a (virtual) collinear detector

Transformation between fan-beam 
data and parallel data:

=

t=scos= s D
D 2s2

(from  [Kak])



  

Similar to the equiangular case, we can transform the parallel FBP to β, s

... and end up with the FBP formula for the collinear detector:

f r , =∫
0

2
1
U 2∫

−∞

∞

R  s
D

D2s2

h s '−s
2

ds d 

Equally spaced collinear detector



  

f r , =∫
0

2
1
U 2∫

−∞

∞

R  s
D

D2s2

h s '−s 
2

ds d 

Equally spaced collinear detector

Where s' is the backprojected 
coordinate of (r,Φ) in Projection β

s '=
EP
SP

SO=D rcos  − 
Drsin − 

And U is the ratio

U r , , =
SO OP
D

=
Dr sin− 

D

of the projection onto the central 
ray.(from  [Kak])



  

Overview

● 2D Fan Beam Reconstruction

● Shortscan Reconstruction

● 3D Cone Beam Reconstruction



  

Parallel beam shortscan
For the case of parallel projections, it is easy to see that a scan over an angle of 180° is 
sufficient, because projections that are 180° apart, are mirror images of each other: 

P t =P180 °−t 

X

Y

θ



  

Fan-beam shortscan
Consider a Fan-beam scan over 180°:

X

Y

Question: is the collected data sufficient for reconstruction?



  

Fan-beam shortscan
Consider a Fan-beam scan over 180°:

X

Y

No! Some projection rays are missing in the measured data,
other rays are measured twice, what leads to redundancy in the data set.



  

Fan-beam shortscan
To be able to reconstruct an object, we need to scan at least over an interval of 

X

Y

Unfortunately, this adds even more redundancy to our measurement.

180°2  m



  

Fan-beam shortscan
To be able to reconstruct an object, we need to scan at least over an interval of 

X

Y

180 °2 m

 redundant range for 

− m≤≤ m0



  

Fan-beam shortscan
To be able to reconstruct an object, we need to scan at least over an interval of 

X

Y

180 °2 m

 redundant range for 

− m≤≤ m0

−1
2
 m≤≤ m

 m



  

Fan-beam shortscan
To be able to reconstruct an object, we need to scan at least over an interval of 

X

Y

180 °2 m

 redundant range for 

− m≤≤ m0

−1
2
 m≤≤ m

 m

0≤≤ m2  m



  

Fan-beam shortscan
To be able to reconstruct an object, we need to scan at least over an interval of 

X

Y

180 °2 m

 redundant range for 

− m≤≤ m0

−1
2
 m≤≤ m

 m

0≤≤ m2  m

1
2
 m≤≤ m3 m



  

Fan-beam shortscan
To be able to reconstruct an object, we need to scan at least over an interval of 

X

Y

180 °2 m

 redundant range for 

− m≤≤ m0

−1
2
 m≤≤ m

 m

0≤≤ m2  m

1
2
 m≤≤ m3 m

= m4  m



  

Sinogram
The sinogram shows the value of the line integral for a specific β,γ

 redundant range for 

− m≤≤ m0

−1
2
 m≤≤ m

 m

0≤≤ m2  m

1
2
 m≤≤ m3 m

= m

γ

β

2 m

180°

180°2  m

The green area shows the data that is measured twice

4 m



  

Handling redundancy
1st try: use a binary window function to hide redundant data

γ

β

2  m

180 °

180°2 m

w  ={
0 0≤≤2 m2
1 elsewhere

}

This window function is not usable, because 
the sharp edge introduces high frequencies, 
that causes strong artifacts during the 
filtering process:

Full scan Short scan with 
binary window

(from  [Tur])



  

Handling redundancy
2nd try: use a smooth window function to hide redundant data: „Parker weighting“

γ

β

2  m

180 °

180°2 m

w  ={

sin245°


 m
 0≤≤2  m2

sin245 °
2  m180 °−

 m−
 180 °2≤≤180 °2 m

1 elsewhere

}

Some properties:

w  =0

∂w  
∂ 

=0 for =2 m2  and =180°2

for =0 and =180°2 m

w is continuously differentiable

w1
 1w 2

 2=1 for redundant rays



  

Handling redundancy

Some results:

Full scan Short scan with 
Parker weighting

2nd try: use a smooth window function to hide redundant data: „Parker weighting“

γ

β

2  m

180 °

180°2 m

w  ={

sin245°


 m
 0≤≤2 m2

sin245 °
2 m180 °−

 m−
 180 °2≤≤180 °2 m

1 elsewhere

}

(from  [Tur])



  

Parallel rebinning
Reconstruction from Fan-beam geometry can also be done by re-sorting the 
fan-beam data into a parallel dataset:

=
t=D sin

P t =R
−sin−1 t

D

sin−1 t
D


using

and applying the FBP for the parallel case to this dataset.and applying the FBP for the parallel case to this dataset.

Problem: for discrete functions P and R this requires interpolation



  

Overview

● 2D Fan Beam Reconstruction

● Shortscan Reconstruction

● 3D Cone Beam Reconstruction



  

3D Reconstruction

A 3D object can be reconstructed using 2D methods by scanning it slice by slice:

● Requires a complex mechanical system 
●The scan is very time-consuming, because the X-Ray source or the object has to
  be moved in every step
● The X-Ray dose is not used optimally



  

3D Cone Beam Reconstruction
z

● Multiple fans with the same origin
● The X-ray source is rotated on a circular trajectory in the x/y plane
● The detector has planar shape
● Using this geometry, it is not possible to do an exact reconstruction of the object

Measured projections:

R a ,b



  

The Feldkamp Algorithm
● Developed in 1984 by Feldkamp, Davis, Kress

● Approximate method for reconstruction from Cone beam data

● The reconstruction is based on filtering and backprojecting the single planes in
   the cone independently.

● The reconstruction result is obtained by summing up the contributions of all
   tilted fan beams.

● The final algorithm is very similar to the 2D algorithm for equispaced
   fan beams on a collinear detector.



  

The Feldkamp Algorithm
Step 1: Preprocess each projection using 

R'  a ,b:=R a ,b
D

D 2a2b2

Step 2: Convolve each projection in 'a'-direction with the impulse response

g a =1
2
h a

Q a ,b=R'  a ,b∗
1
2
h a



  

The Feldkamp Algorithm
Step 3: Perform a weighted backprojection of each filtered projection along the cone

f x , y , z =∫
0

2
1
U 2 Q a x , y ,  , b x , y , z , 

Where a and b can be found by backprojecting voxel (x,y,z) into projection β:

a x , y , =D xcos  y sin
Dx sin− y cos

bx , y , z , = z D
Dx sin − y cos

And the weighting factor U is identical to the factor for fan beam reconstruction:

U x , y , =Dx sin − y cos
D



  

Some notes
● The Feldkamp algorithm is exact for points in the x/y plane (the plane where
   the source trajectory lies).

● The computation of the coordinates in the projections of a backprojected voxel
   can be rewritten to a linear mapping in homogeneous coordinates.
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