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Overview

e 2D Fan Beam Reconstruction
e Shortscan Reconstruction

e 3D Cone Beam Reconstruction



Parallel vs. Fan-beam
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Measured projections:
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(R is measured at equiangular intervals)



FBP for parallel projections
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Polar coordinates:
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Transformation to Fan-beam geom.
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Where can we find the data for this projection ray in the fan beam projection data?



Transformation to Fan-beam geom.
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Transformation between 6,t and 3,y can be described by

0=F+y
t=Dsiny



Transformation of the FBP integral
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Transformation of the FBP integral
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Further simplification can be applied to the argument of the function h.



Transformation of the FBP integral

Consider a point C in polar coordinates
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(from [Kak])
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With L being the distance from C to the source S
and y' being the angle of the projection ray C lies on



Transformation of the FBP integral

h(L sin y) can be expressed in terms of h(y):
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Putting things together
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The algorithm
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Step 1: Preprocess each projection using R, (y );:RB (y)Dcosy

Step 2: Convolve each projection with the impulse response

gly)=3 1) ly)

Step 3: Perform a weighted backprojection of each filtered projection along the fan,

Where L is the distance of a given point (r, @) from the source:

L(r,$,B)=V[D+rsin(f—¢ )] +[rcos(B —)f

And y' can be computed according to

y '=tan"' (rcos(B—¢ )/(D+rsin(B—¢)))



Equally spaced collinear detector

So far: we used projection rays on equiangular intervals
Now: use equally spaced projections on a (virtual) collinear detector

Transformation between fan-beam
data and parallel data:
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(from [Kak])



Equally spaced collinear detector

Similar to the equiangular case, we can transform the parallel FBP to 3, s

"I thinle wvou should be more
explicit here 1in step two."

... and end up with the FBP formula for the collinear detector:
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Equally spaced collinear detector
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Overview

e 2D Fan Beam Reconstruction
e Shortscan Reconstruction

e 3D Cone Beam Reconstruction



Parallel beam shortscan

For the case of parallel projections, it is easy to see that a scan over an angle of 180° is
sufficient, because projections that are 180° apart, are mirror images of each other:
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Fan-beam shortscan

Consider a Fan-beam scan over 180°:

Question: is the collected data sufficient for reconstruction?



Fan-beam shortscan

Consider a Fan-beam scan over 180°:
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No! Some projection rays are missing in the measured data,
other rays are measured twice, what leads to redundancy in the data set.



Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of 180°+2y

S

Unfortunately, this adds even more redundancy to our measurement.




Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of 180°+2y ,

B redundant range fory
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Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of 180°+2y ,

B redundant range fory
0 Y=Y =Y



Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of 180°+2y ,
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0 Y uSY SYom
Y m —%ymﬁy =¥ n
2Ym 0<y =<y,




Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of 180°+2y ,
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Fan-beam shortscan

To be able to reconstruct an object, we need to scan at least over an interval of 180°+2y ,
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Sinogram

The sinogram shows the value of the line integral for a specific 8,y

The green area shows the data that is measured twice
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Handling redundancy

1 try: use a binary window function to hide redundant data

sA

180°+2y ,,

180°

{O 0<B=<2y +2y

"p y)= 1 elsewhere

This window function is not usable, because
the sharp edge introduces high frequencies,
that causes strong artifacts during the
filtering process:

(from [Tur])

binary window



Handling redundancy

2" try: use a smooth window function to hide redundant data: ,Parker weighting“
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Some properties:

w is continuously differentiable

w, (y)+w, (y,)=1  for redundant rays

w,(y)=0 for =0 and B=180°+2y,

ow, (y)
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=0 for =2y ,+2y and B=180°+2y



Handling redundancy

2" try: use a smooth window function to hide redundant data: ,Parker weighting“
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Some results:

(from [Tur])

Full scan Short scan with
Parker weighting



Parallel rebinning

Reconstruction from Fan-beam geometry can also be done by re-sorting the
fan-beam data into a parallel dataset:

using
0=p+y
t=Dsiny

and applying the FBP for the parallel case to this dataset.

Problem: for discrete functions P and R this requires interpolation



Overview

e 2D Fan Beam Reconstruction
e Shortscan Reconstruction

e 3D Cone Beam Reconstruction



3D Reconstruction

A 3D object can be reconstructed using 2D methods by scanning it slice by slice:

* Requires a complex mechanical system

*The scan is very time-consuming, because the X-Ray source or the object has to
be moved in every step

* The X-Ray dose is not used optimally



3D Cone Beam Reconstruction

Measured projections:
R (a,b)

* Multiple fans with the same origin

* The X-ray source is rotated on a circular trajectory in the x/y plane

* The detector has planar shape

* Using this geometry, it is not possible to do an exact reconstruction of the object



The Feldkamp Algorithm

* Developed in 1984 by Feldkamp, Davis, Kress
* Approximate method for reconstruction from Cone beam data

* The reconstruction is based on filtering and backprojecting the single planes in
the cone independently.

* The reconstruction result is obtained by summing up the contributions of all
tilted fan beams.

* The final algorithm is very similar to the 2D algorithm for equispaced
fan beams on a collinear detector.



The Feldkamp Algorithm

Step 1: Preprocess each projection using

D
R'.(a,b):=R,(a,b)
o e ey

Step 2: Convolve each projection in 'a'-direction with the impulse response
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The Feldkamp Algorithm

Step 3: Perform a weighted backprojection of each filtered projection along the cone
21 1
flxyiz= | 50 (alx.y.B).blx.v.2.B)

0

Where a and b can be found by backprojecting voxel (x,y,z) into projection [3:

xcos B+ ysin
a(x,y,B)=D .ﬁ ysinp
D+xsmp —ycosp
zD
b(x,y,z,B)=

D+xsin—ycosf

And the weighting factor U is identical to the factor for fan beam reconstruction:

D+xsin 8 —ycosf
D

Ulx,y.B)=



Some notes

* The Feldkamp algorithm is exact for points in the x/y plane (the plane where
the source trajectory lies).

* The computation of the coordinates in the projections of a backprojected voxel
can be rewritten to a linear mapping in homogeneous coordinates.
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