MB-JASS 2006

2-D Reconstruction

Hannes Hofmann 19 – 29 March 2006

Outline

- Projections
- Radon Transform
- Fourier-Slice-Theorem
- Filtered Backprojection
- Ramp Filter

Parallel Projections

X-Rays are attenuated as they propagate through the human body

 $p_{\theta}(t)$: projection under viewing angle θ f(x,y) = f(x): 2D slice

Hannes Hofmann

Radon Transform

• The signal $p_{\theta}(t)$ is the Radon transform of the object

$$p_{\theta}(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - t) dx dy$$

 Set of line integrals along the direction θ at the distance t from the origin

Radon Transform (2)

A simple image (left) and the sinogram (right)

produced by applying the Radon transform (180 projections with an angle of 1 degree)

Unfiltered BP

Ok, that's bad. But we used only 18 projections.

Unfiltered BP (2)

Now we used all 180 projections. Still poor image quality.

Fourier Slice Theorem

Projection under angle heta

Slice under θ in freq. domain

Fourier Slice Theorem (2)

• Projection of f(x, y) in y direction is $p_{\theta=0}(x)$

 $p_{\theta=0}(x) = \int_{-\infty}^{\infty} f(x, y) dy$

Fourier Slice Theorem (2)

- Projection of f(x, y): $p_{\theta=0}(x) = \int_{-\infty}^{\infty} f(x, y) dy$
- The Fourier transform of f(x, y) is

 $F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{2\pi i (xu+yv)} dx dy$

Fourier Slice Theorem (2)

- Projection of f(x, y): $p_{\theta=0}(x) = \int_{-\infty}^{\infty} f(x, y) dy$
- The Fourier transform of f(x, y) is $F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{2\pi i (xu+yv)} dx dy$
- The slice *s*(*u*) is then

$$s(u) = F(u,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi xu} dx dy$$
$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x,y) dy \right] e^{-i2\pi xu} dx$$
$$= \int_{-\infty}^{\infty} p_{\theta=0}(t) e^{-i2\pi tu} dt$$

- which is just the Fourier transform of $p_{\theta=0}(x)$
- Formal derivation see e.g. Kak & Slaney

Fourier Slice Theorem (3)

Projection under many angles

Slices in frequency domain

FST - Regridding

Projection data lies on circles (dots) and has to be interpolated to a Cartesian coordinate system

Interpolation gets worse with increasing u & v

Errors in high-frequency regions, i.e. regions with high detail

Unfiltered Backprojection

Solution: Filtering

Ideal situation

Fourier Slice Theorem

Solution: Filtering

Ideal situation

Fourier Slice Theorem

The ideal is approximated by a weighting (highpass)

Filtered Backprojection

• Switch to polar coordinates $f(x, y) = \int_{0}^{2\pi} \int_{0}^{\infty} F(w, \theta) e^{i2\pi(x\cos\theta + y\sin\theta)} w \, dw \, d\theta$ $= \int_{0}^{\pi} \int_{0}^{\infty} F(w, \theta) e^{i2\pi(x\cos\theta + y\sin\theta)} w \, dw \, d\theta$ $+ \int_{0}^{\pi} \int_{0}^{\infty} F(w, \theta + \pi) e^{i2\pi(x\cos(\theta + \pi) + y\sin(\theta + \pi))} w \, dw \, d\theta$

Filtered Backprojection

- Switch to polar coordinates $f(x, y) = \int_0^{2\pi} \int_0^{\infty} F(w, \theta) e^{i2\pi(x\cos\theta + y\sin\theta)} w \, dw \, d\theta$ $= \int_0^{\pi} \int_0^{\infty} F(w, \theta) e^{i2\pi(x\cos\theta + y\sin\theta)} w \, dw \, d\theta$ $+ \int_0^{\pi} \int_0^{\infty} F(w, \theta + \pi) e^{i2\pi(x\cos(\theta + \pi) + y\sin(\theta + \pi))} w \, dw \, d\theta$
- 180° symmetry $F(u, \theta + \pi) = F(-u, \theta)$

$$f(x, y) = \int_0^{\pi} \left[\int_{-\infty}^{\infty} F(w, \theta) e^{i2\pi wt} |w| dw \right] d\theta$$

 $(t = x \cos \theta + y \sin \theta)$

Filtered Backprojection (2)

- Apply Fourier Slice Theorem $f(x, y) = \int_{0}^{\pi} \left[\int_{-\infty}^{\infty} P_{\theta}(w) e^{i2\pi wt} |w| dw \right] d\theta$
- Which can be written as

$$f(x, y) = \int_{0}^{\pi} Q_{\theta}(t) d\theta$$
$$Q_{\theta}(t) = \int_{-\infty}^{\infty} P_{\theta}(w) e^{i2\pi wt} |w| dw$$

• Q is the filtered projection with filter function |w| (in frequency domain)

Ramp Filter

- Convolution in frequency domain
- High-pass, emphasizes noise

Filter Results

Attenuation profile of a cylinder

Filtered attenuation profile

Filtered BP: Result

Reconstruction using ramp filtered backprojection (180 projections)

Hannes Hofmann

Sharp Kernel

Bone image: use sharp kernel high resolution high noise

Soft Kernel

Soft tissue: use soft kernel lower resolution less noise

Filtered Backprojection

Thanks

Thank you for your attention.

Do you have any questions?

References

- A. C. Kak and Malcolm Slaney, Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics, 2001
- S. Horbelt, M. Liebling, M. Unser: Filter design for filtered back-projection guided by the interpolation model, Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI'02), San Diego CA, USA, February 24-28, 2002, vol. 4684, Part II, pp. 806-813.
- http://en.wikipedia.org/wiki/Radon_transform
- http://en.wikipedia.org/wiki/Projection-slice_theorem
- J. Hornegger, D. Paulus: Slides to Medical Image Processing
- B. Heismann: Slides to Medical Imaging
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/HAYDEN/ Slice_Reconstruction.html
- http://www.mssl.ucl.ac.uk/www_solar/moses/moses-web/Pages/fourier-slicetheorem.jpg
- http://www.eng.warwick.ac.uk/~espbc/courses/undergrad/lec13/filtered_bac kprojection.htm