Programming the SPE

Quirin Meyer
March 17, 2006

1 Introduction and Overview

The SPEs, so called Synergestic Processing Units, play an important role in the
novel Cell Broadband Engine (CBE) design created by IBM, Sony and Toshiba.
The Power Processing Unit, which is a state of the art superscalar RISC proces-
sor with a 512K L2 cache, is enhanced by a number of SPEs. In current designs
this number is typically eight, but future processors based on the CBE are likely
to accommodate more. The basic idea of these SPEs is to ofload work from the
PPU to them by creating SPE threads that run independently.

In this handout, the overall design of a single SPE is presented. This includes
a brief description of the core parts of an SPE, the Synergestic Processing Unit
(SPU) and the Memory Flow Controller (MFC). Moreover coding methods are
presented and in the last section additional topics are presented. Note that the
main reference to this handout is IBM’s Cell Broadband Engine Programming
Tutorial [1].

2 Hardware Overview

As already mentioned the SPE is subdivided into an MFC and SPU. Archi-
tectural, the SPU is a RISC processor with a large register file containing 128
register each 128 bit (i.e. 16 Byte) wide. Operations on those registers are
SIMD commands. Beside the RISC core there is a local store (LS) with the
capacity of 256 KB. More information will be given in the upcoming section.
The second part of the SPE is the Memory Flow Controller (MFC). Its basic
purpose is to connect the SPE with the rest of the architecture. This is realized
through the so called Element Interconnection Bus (EIB). A central role in the
overall design plays the DMA controller, which is responsible for moving data
from and to its SPE.

Note that SPEs are not meant to run operating systems, which would contradict
the design idea of the Cell Processor, which states that the PPE has the main
control of the application and subdivides the problem among several SPEs.

3 SPU

The SPU is the number crunching module in the SPE. Its register file with its
128 members is sufficiently large for a load-store architecture. Generally those

registers allow data types sized from 8 Bits up to 128 Bits. Floating point data
is support too but in contrast to the PPE, double precission is availalbe on the
SPUs, besides single precission. However, the performacne is at least one order
of magnitude lower (21.03 GFLOPS against 230.4GFLOPS[5]) when using dou-
bles.

Another difference is that the SPE is not supporting the standardized IEEE
754 format for floating point representation but a modification of it, possibly
leading to different numerical results.

However, the underlying instruction set is designed for SIMD usage. SIMD is
short for ”Single Instruction Multiple Data” and explained as follows. Each
of the 128 Bit wide registers can be subdivided into several smaller registers.
For example, four single precission floating point variables or two double pre-
cission floating point variables can be held in one registers. Operations on
these subregisters are performed independently but simultaneously. Therefore
the name SIMD becomes quite clear: several variables (the MD in SIMD) get
processed by one single instruction (SI). Note that the subdivision of these
registers can almost be arbitrary starting from 8 Bits per subregister up to
128 Bits, which means no subdivision at all. Therefore possible data types
are: vector [signed|unsigned] [char|shortl|int|long|long long] for in-
teger variables, and vector float, vector double for floating point variables.
Moreover, the SPE usually performs SIMD operations on all subregister, not
only a on subset of them, which makes the exploitation of all subregisters manda-
tory for achieving maximum performance.

Now that the reservation of a SIMD vector suited for SPE in C/C++ is ex-
plained the question of how to access SIMD operations is answered. First of all
the compiler can do the job on its own. Moreover, one has the possibility to
access the assembly instructions, without writing SPE assembly code, directly
by using so called compiler intrinsics. These are architure specific extensions
which allow access to a processor instruction set. A nice feature about the usage
of intrinsics is that the compiler can still enhance the code by optimization tech-
niques such as loop optimizations, instruction scheduling, data load and store
and so forth. Moreover an abstraction to register allocation is provided which
is demonstared by the following examples:

vector int a, b, c;
/* do something with a,b,cx/
¢ = si_fa(a,b);

This example takes a vector, consisting of four integer variables, adds it to
another vector of the same type and stores it into c¢. Note that this intrinsic
maps to one specific assembly instruction. These intrinsics are called Spe-
cific intrinsics. In practice it is more convenient to use Generic Intrinsics
which provide the program with data abstraction. For example the intrinsic
spu-add(a,b) performs different additions depending on the data type of a and
b. This handout is not providing a description of the assembly instructions or
the intrinsics. This can be looked up in the documentation[3]. What should
however be mentioned is that not all instructions that are availabe on the SPU
are implemented on PPU and vice versa. For example the PPE is not suppor-
ing double FP and an integer multply and accumlate whereas the SPU has no
equivalents for the PPE instructions handling saturating math or logarithms,
just to mention a few.

Additionally the SPUs have, in contrast to other processor designs and the PPE,
no caches, thus guaranteing constant access times for load and stores.

Before going into to further architectural aspects of the SPU, a little example
demonstrating the usage of SIMD commands with intrinsics is given. Consider
the squared Euclidean norm of a big vector. Mathematically it is described by

n
loll3 = o7
=0

which can be put into code:

float euc(floatx v, int n) {
float acc;
for(i = 0; i <n; i++)
acc += v[i]*xv[i];
return acc;

}

Note that this piece of code is not exploiting SIMD functionality unless the com-
piler is recognizing that this code can be vectorized. However, mathematically
the sum can be decomposed into four sums, i.e.

n/4 n/4 n/4 n/4

2 _ 2 2 2 2
[vllz = E Ugsi + E Usit1 T E Visita T E Vixit3
i=0 i=0 =0 i=0

assuming that n is a multiple of 4. In code this looks like:

float euc(floatx v, int n) {

float accO;

float accl;

float acc2;

float acc3;

for(i = 0; i <mn; i4+=4){
accO +=v[i J*xv[i];
accl += v[i+1]*v[i+1];
acc2 += v[i+2]*xv[i+2];
acc3 += v[i+3]xv[i+3];

}

return accO+accl+acc2+acc3;

}

Instead of using four different float variables one float vector is used and SIMD
instructions, i.e.:

float euc(vector float=* v, int n) {
vector float acc;
for(i = 0; 1 <n/4; i++){
acc = spu-fmadd(v[i],v[i], acc0);
}

return _sum_across_float4 (acc);

Note that if the vectorsize is not a multiple of four special treatment is necessary
for the remaining components.

Notably, the SPU execution units can perform up to two operations simul-
taneously. Floating point, integer operations and byte operations are executed
on the Even Pipeline and load and store instructions, branch hints, branch
resolutions, channel interface instructions, access to special purpose registers
and shuffle instructions are issued on the Odd Pipeline. The SPU always
executes instructions in program order, in contrast to contempory super scalar
architectures no instruction reordering is done ([1], [7]). The disbrution among
the two pipelines is implement as follows: After two instructions got fetched
from the local store the SPU tries to issue both. If this is not possible, due
to pipeline stalls or data dependencies, the first instruction gets issued and the
second is issued as soon as possible. Only after both instructions got executed
the next instruction pair is fetched. Note that the cycles per instruction (CPI)
rate is due to dual issuing normally < 1 ideally 0.5.

When compiling the code of the squared Euclidean norm from above (with
gce-spu -03) using make filename.s to retrieve the assembly output, one can
see that the inner loop of the routine has been translated to:

.L9:

ai $5,%85,—1

lqx $15,$4 ,$6

lqx $14,%4,$6

ai $4 $4 16

nop $127

nop $127

fma $8,$%15,%14, $8

LL17:
brnz $5,.L9

Using the CBE Simulator one can validate that only 25 % of all instructions
are performed in parallel and 50 % of the cycles are either spent on stalls or
nops. Moreover one fourth of all instructions is issued non parallel. Modifying
the code from above by implementing software pipeling, in order to hide load
latencies, and loop unrolling [7], 70 % of all instructions are issued in parallel
leaving virtually no stalls and nops penalty cycles. Note that still 28 % of all
instructions are single issued:

vector float temp0 = bigvec|[j];
vector float templ = bigvec[j+1];
vector float temp2 = bigvec[]j+2];
vector float temp3;
for (; j<VECTORSIZE—4;j+=4) {
acc0 = spu_madd(temp0O, tempO, accO);
temp3 = bigvec[j+3];
accl = spu_madd(templ, templ, accl);
temp0 = bigvec [j+4];
acc2 = spu_madd(temp2, temp2, acc2);
templ = bigvec[j+5];

acc3 = spu_madd(temp3, temp3, acc3);
temp2 = bigvec[j+6];
}
temp3 = bigvec [j+1];
acc0 = spu_madd (temp0, tempO, accO)
accl = spu_madd (templ, templ, accl);
acc2 = spu_madd (temp2, temp2, acc2)
acc3 = spu_madd (temp3, temp3, acc3);

)

)

Alternatively one can use IBM’s spuxlc which performs way better than gcc.
Whereas the latter is not performing loop unrolling at all IBM’s counterpart
unrolls the loops.

Before going into the discussion of MFC, some attributes of the local store
should be mentioned. Each load and store operation issued from the exectution
unit has a latency of six cycles and 16 bytes per cycle can transfered. In order
to guarantee efficient load and store operations, data should always be aligned
to a 16 bytes boundary, e.g.

vector int eastwood[128] __attribute__ ((aligned(16)));

4 MFC

Until now it was assumed that data has already been placed in the local store.
The SPU itself does not have a mechanism to access Main Storage (MS) di-
rectly. This can only be achieved by using the so called Memory Flow Controller
(MFC), which consists of Memory Mapped I0 Registers (MMIO) and a
DMA Controller (DMAC). The primary function of the MFC is to connect the
SPU to the EIB in order to issue DMA transfers from or to the LS. The MFC
of an SPE is addressed from within the SPE by using channel instructions and
from outside the SPE, i.e. other elements such as the PPE or other SPEs, these
register are mapped into MS [2].

4.1 DMA

DMA transfers are designed to transport large data portions to and from the
SPE. Per cycle up to 128 Bytes can be transported. The maximum number
that can be handled by a single DMA transfer is limited to 16KB. In between a
multiple of 16 Bytes is mandatory, except byte sizes of 2,4 and 8. Best perfor-
mance is archived with a 128 Byte alignment for both source and destination
addresses and if the transfered size is a multiple of 256 Bytes ([1]). Note that
DMA is non blocking, i.e. the execution of the code running on the SPE is not
interrupted.

In order to issue more than one DMA command, several of them can be placed
within a list. 2048 of these lists are available, each with a maximum size of
16KB. Since DMA commands are non blocking they are stored in two queues,
depending from where the command is issued. If the PPE or other elements use
the MFC of an SPE, the commands are placed in the MFC Proxy Command
Queue, otherwise, the MFC SPU Command Queue is filled by using so called

Channel Instructions.

The following example demonstrates how to initiate a DMA transfer from
an SPE. The respective channel registers are written by using the spu intrinsic
spuwritech. The channels have to be written in a specific order and with the
last write instructions the command is issued to the MFC SPU command queue

[2],[1].

void dma_transfer(volatile void* lsa, unsigned int eah,
unsigned int eal, unsigned int size,
unsigned int tag_id, unsigned int cmd) {
spu-writech (MFC_LSA, (unsigned int)lsa);
spu-writech (MFCEAH, eah);

spu_writech (MFC.Cmd, cmd);
}

Alternatively spu_mfcdma64(ls, eah, eal, size, tagid, cmd) provided by
the SDK [1] can be used. 1s represents the local store address, eah, eal is
the address in main storage, and size is the number of bytes the data block
possesses. The last parameter cmd is the command describing what kind of
transfer is to be initiated, which can basically be either MFC_GET, which loads
data from MS to LS and MFC_PUT, which loads data to MS from LS. In order to
synchronize commands the tagid, ranging from 0 to 31, labels the transfer or
transfer groups. This of special interest when using barrier or fences to order
commands. For more information refer to [1].
In the following example an array is loaded into LS from MS:

/+ select all groups to be included in query or wait operationssx*/
spu_-writech (MFC_WrTagMask, 1);

/* start DMA command in order toget data x/
spu_mfcdma32((void«)spearray , (unsigned int)ppearray, size, 1,

MFCGETCMD) ;
/* wait for all dma transfer to be done * /
/+ Possible parameters: */
/* 0 non—blocking */

/* 1 block for any commands to be complete */
/* 2 block for all commands to be complete x/
spu_mfcstat (2);

Note that spumfcstat(int) is a mean to wait for DMA transports, whose
tagid has been masked by spuwritech(MFCWrTagMask, 1), to be finished.
More information about DMA transfers especially from PPE to SPE can be
found at [4], [2] and [6].

4.2 Further communication means

Signal Notification is a mean to sent short 32 Bit message to an SPE. Each MFC
has two registers were signals can be written to or read from. Here is a little

example that also introduces the creation of SPU threads on the PPE: First the
PPE creates a number of threads and sends signals to all threads.

extern spe_program_handle_t signal_spu;
int main() {
int i, status;
speid_t spe_ids [SPE.THREADS];
for (i=0; i<SPETHREADS; i++)
spe_ids[i] = spe_create_thread (0, &signal_spu , NULL, NULL,
for (i=0; i<SPETHREADS; i-++)
spe-write_signal (spe_ids[i], SPESSIGNOTIFY_REG.1, i+42);

for (i=0; i<SPETHREADS; i++)
spe_wait (spe_ids[i], &status, 0);

}

The threads created on the SPE do nothing but waiting for the signal to arrive
and then terminate.

int main(unsigned long long spu_.id , unsigned long long parm) {
int ack;
unsigned int signal;

do {

ack = spu_stat_signall ();
} while (ack == 0);
signal = spu_read_signall ();

fprintf(stderr, ” Recieved signal: %d\n”, signal);
return (0);

}

Another way to communicate between PPE and SPE are so called mailboxes.
Each SPU has an inbound mailbox that, in contrast to signals, can hold more
than one entry, namely four. Therefore it is organized as a FIFO queue. More-
over there is an outbound mailbox and interrupt mailbox. Access to mailboxes
is once more realized through channel operations from within the SPE and via
MMIO Register from the PPE.

5 Coding Methods
5.1 Double Buffering

From the last section it is known that DMA transfers are non-blocking. However
to make sure that the data is available the corresponding tagid of the DMA
transfer has to be masked by using spu_writech(MFC WrTagMask, tagidmask)
and a subsequent spumfcstat(2) has to be called. This might lead to the
following (poor) schematic code when the block being transfered is subdivided
into several smaller blocks B[i].

Foreach i
Transfer B[i] from MS to LS
Wait for B[i]

Process B[i]

Clearly the bottle neck is in line three, because the process waits actively for
the data to arrive. A more smarter way is to process a previously transfered
buffer while transfering the next buffer, i.e.

Transfer B[0]
Foreach i
Transfer B[i]
Wait for B[i-—1]
Process B[i—1]
Wait for completion of B[i—1]
Process[n]

5.2 Branches

The SPU’s execution unit fetches instruction after instruction. In order to be
more efficient it even prefetches instruction. Unfortunately when a branch in-
struction occurs, that jumps to a different location in the code, instructions
that have already been prefetched are not usable and the instructions at the
new program location have to loaded. This costs about 20 cycles. Compared
to the latency of a regular SPE instruction, ranging from 2 - 7 cycles, this is
rather large.

Therefore it is wise to avoid unnecessary branching, for example when calling
functions. This causes two jumps, one to jump into the routine and one to
return from it. Inlining does nothing but placing the code of the subroutine at
the location where it is called by the compiler.

Moreover loop unrolling is also a good mean to reduce the number of loops
and the number of branches in a for statement, for instance. Due to the
large number of registers, this is possible. Loop unrolling can be done either
manually or by the compiler (either globally by providing a flag, e.g. spuxlc
-qunroll=[yes|nolauto] or by locally by placing a #pragma in front of the
according loop).

Jumps due to conditional statements are more harder to treat. On the SPE
simple if-else statements such as

if (a > b)
d += a;
else
d += 1;

can be replaced by calculating both results and finally select the correct by ap-
plying the spu intrinsics to evaluate the condition (here spu_cmpgt) and spu_sel
to select the repsective solution:

select = spu_cmpgt(a,b);

dl = spu.add(d, a);

d2 = spu.add(d, 1);

d = spu-sel(dl, d2, select);

This is usually faster than branching.

Additionally to selection, branch hints can placed into the code, indicating the
most likely possibility when writing if-statements. The information passed to
those hints can either be dynamically, based on a runtime profile, or statically by

a priori knowledge. Branch hits are implemented in C using __builtin_expect (pred,
1)), where pred is the predicate and 1==1 indicates, that the if branch is more
likely than the else branch and 1==0 referees to the inverse situation. Note
that branch hints map to assembly instruction and the compiler does its best

to place them correctly in the code. Here is an example demonstrating branch
hints:

if (__builtin_expect(a > b, 0))

c += a;
else
d +=1;

6 Miscellaneous

6.1 Application Partioning

In this section we want to leave the isolated view on the SPE towards program
models that integrate the SPE in the overall architecture. Therefore one distin-
guish between PPE centric and SPE centric models. In the latter one the PPE
plays the role of a centralized resource manager from which the SPEs fetch their
jobs one after the other. In the PPE centric model the main application still
runs on the PPE while the SPEs complete several task. This can be in a form
of a pipeline where data is transfered from one SPE to the next and at each
stage a little more of the final solution to the problem is added. An example
for this is a computer graphics pipeline.

In parallel stages the problem gets subdivided into several subproblems that can
be solved simultaneously, e.g. a matrix multiplication. In a service model func-
tions are distributed among several SPEs and the PPE asks the SPEs to deal
with a certain problem, e.g. one SPE does video encoding, the other handles
video decoding and the third is good at solving sparse linear systems.

6.2 Porting Code from PPE to SPE

The suggested developing process in [1] is first to write fully vectorized code on
the PPE and then port it to the SPEs. This has the advantage that memory is
not limited to 256 KB, DMA transfers can be neglected and the PPE provides
better debugging facilities. After having written an PPE program that has to
be ported to the SPE several pitfalls might occur, such as the different SIMD
instructions sets, that come along with different performance characteristics.
Moreover there are instructions that do not exist either on the SPE but on the
PPE or vice versa. Moreover floating point representation is different. One
strategy that [1] offers is so called macro translation. This encourages the usage
of intrinsics that map 1-to-1 on both instruction sets. Moreover, one should
only use data types that are available on the SPU and the PPU and it is wise
to construct vectors by applying the same vector literal construtions.

References

[1] Cell Broadband Engine Programming Tutorial, Version 1.0. IBM, 2005.

SPE Runtime managment Library. IBM, 2005.
SPU C/C++ Language Extensions. IBM, 2005.
Synergistic Processor Unit Instruction Set Architecture. IBM, 2005.

Chen T. et. al. Cell broadband engine architecture and its first implemen-
tation. Technical report, IBM, 2005.

Srinivasan V. et. al. Cell broadband engine processor dma engines. Technical
report, IBM, 2005.

Goedecker and Hoisse. Performance Optimization of Numerically Intensive
Codes. STAM, 2001.

10

