

Outline

- Why Cell ?!?
- Application Areas
- Architectural Overview
- SPU Programming Model
- Programming on the PPE
- C/C++ Intrinsics

- -

The Cell Supercomputer on a chip Multi-Core Microprocessor (9 cores) 10x perfomance for many applications > 4 GHz clock frequency Digital home to distributed computing

Application Areas

- Playstation 3
- Multiple parallel calculations
- High performance in multimedia applications
- Energy efficiency (GFLOPS/Watt)

4

Key Attributes

- Cell is Multi-Core
 - Contains 64-Bit Power Architecture
- Contains 8 Synergistic Processor Elements (SPE)
- Cell is a Flexible Architecture
 - Multi-OS support (including Linux) with Virtualization technology
 - Path for OS, legacy apps, and software development
- Cell is a Broadband Architecture
 - SPE is RISC architecture with SIMD organization and Local Store
 - 128+ concurrent transactions to memory per processor
- Cell is a Real-Time Architecture
 - Resoure allocation (for Bandwidth Measurement)
 - Locking Caches (via Replacement Management Tables)
- Cell is a Security Enabled Architecture
 - Isotalatable SPE for flexible security programming

High Performance Computing

- Peak performance 256 GFlops
- Place 490 of the 500 Best Supercomputers has 854 GFlops using IBM xSeries Cluster with 256 Intel Xeon processors (2.8 GHz)
- One Cell can decompress 48 MPEG2 Streams (DVD) in parallel

Cell Broadband Engine Architecture (CBEA)

Synergistic Processor Element (SPE) SPE provides computational performance Dual issue, up to 16-way 128-bit SIMD Dedicated resources: 128 128-bit RF, 256 KB Local Store Each can be dynamically configured to protect resources Dedicated DMA engine: Up to 16 outstanding request

I/O and Memory Interfaces

• EIB data ring for internal communication

• Four 16 byte data rings, supporting multiple transfers

• 96 B/cycle peak bandwidth

• Over 100 outstanding requests

• 2 data rings are parallel in cycle

• each data ring can transfer max. 3 x 16 byte

SPU Programming Model

- Virtual File System to externalize the SPUs
 - named spufs
 - mounted on /spu
- Each spufs refers to a logical SPU
 - mem: local store memory
 - run: starts execution of SPU code
 - mbox, ibox, wbox: abstractions for the userspace side
 - reg: register of the spu

Programming on the PPE

- Normal CPU programming
- AltiVec used as Single Instruction Multiple Data (SIMD) architectur
- AltiVec can calculate 8 elements per vector

·

C/C++ Intrinsics

```
void main(){
  reg regC;
```

regC = vec_sums(regA, regB)

}

- saturating math
- sum accross
- log, power
- ceil / floor
- pixel vectors

19