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1 Introduction and Motivation

C-Arm CT systems are, as ordinary CT scanners, applied in medical imaging
and are capable of generating tomographic images based on an X-ray source.
In contrast to regular CT scanners, however, they do not perform a full rota-
tion around the patient. This partial rotation does typically not exceed 220
degrees. Moreover, the trajectory of the X-Ray source and the detector does
not conincide with a circular arc, due to perturbations caused by physical quan-
tities, such as inertia and gravity. Therefore reconstruction algorithms have to
be adapted in order to compensate these deviations. This makes calibration
inevitable, which is discussed in Section 4. The necessary mathematical foun-
dations are introduced in Section 2 which deals with a suitable camera model
and perspective transformations. Finally these findings are adapted to perform
calibration of a C-Arm device in Section 5.

2 Camera

A suitable camera for the problem described above is the so called pinhole

camera model, depicted in Figure 1 (compare [7]). Within this model, light em-
anating from an object passes through the pinhole, which is located on a plane,
and hits the projection screen parallel to the plane. Note that the directions get
flipped and images produced by a pinhole camera are ”upside down”. In order
to describe this model mathematically, we consider the setting in Figure 2 [4].
In this model the camera origin (or viewer’s location) is denoted by C. The
camera coordinate system is spanned by the three camera axis X , Y and Z.
The 2D coordinate system located on the image plane is spanned by x and y.
The origin of this system is the so called principle point p. Consider the 3D
point X. The question that should be answered is how to find a mapping from
the 3D point X to a corresponding point x on the image plane. This mapping
is called projective mapping.

2.1 Projective Mapping

Projective mappings, in this case we consider perspective mappings, can be
derived by only examining a 2D projection of the set-up in Figure 2, which is
visualized in Figure 3. Here, only the Y-Z plane is regarded. In order to find
a mapping to the y coordinate on the image plane we follow the theorem on
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Figure 1: Pinhole camera

Figure 2: Pinhole camera model

2



Figure 3: Pinhole camera model
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where f is the focal length. Analogously one can derived a similar relationship
for the X-Z plane, i.e.

x = f
X

Z

Since this mapping contains a fraction, it is nonlinear. In order to make a linear
mapping out of it, i.e. it is representable by a matrix-vector multiplication,
homogeneous coordinates are introduced.

2.2 Homogeneous Coordinates

The projective space in 3D is denoted by P
3 and represented by a 4-tuple vector

X = (X1, X2, X3, X4)
T where at least one of the components is nonzero. A

mapping from P
3 to R

3 is defined as the division of the first three components
by the fourth, i.e P

3 → R
3 = (X1

X4

, X2

X4

, X3

X4

)T . A possible mapping from R
3 →

P
3 is defined as (X1, X2, X3)

T → (X1, X2, X3, 1)T . Note that homogeneous
coordinates are equal up to a non-zero scalar factor.

2.3 Perspective Mapping Using Homogeneous Coordinates

Exploiting the fact that the conversion from projective space to Euclidean space
involves a division of the first three components by the last, it is possible to
describe a perspective mapping by a matrix-vector multiplication followed by a
perspective divide. In a first step the homogenous coordinates in P

3 are mapped
to homogeneous coordinates in the image plane P

2.

x = P′X =





x

y

u



 =





f 0 0 0
0 f 0 0
0 0 1 0













X

Y

Z

W









After that they are transformed into R
2, i.e. P

2 → R
2 : (ximg , yimg)

T → (x
u
, y

u
)T
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2.4 Intrinsic Parameters of a Camera

Next further refinements to the matrix P′ are discussed. First, the principle
point p denoted in Figure 2 can be displaced on the image plane by a vector
(px, py) changing the matrix into

P′ =





f 0 px 0
0 f py 0
0 0 1 0



 .

Moreover the axis dimensions of the image plane can be different to the X − Y

axes of the world coordinate system. Therefore we introduce scaling factors mx

and my which could for instance be the number of pixels in unit distance, of a
digital camera device. Furtheron they may be skewed by a factor s which takes
into account that the axes of the image plane are not perpendicular:

P′ =





fmx s px 0
0 fmy py 0
0 0 1 0



 .

In this matrix, all the intrinsic parameters are encoded. Since the last column is
zero it is decomposed into a calibration matrix K and projection-model matrix
Ps:

P′ = KPs =





f s px

0 f py

0 0 1



 .





1 0 0 0
0 1 0 0
0 0 1 0



 .

The non-zero entries of the matrix K are degrees of freedom that describe optical
and geometric parameters of the matrix. They are invariant of the camera
orientation and location.

3 Extrinsic parameters

The extrinsic parameters of a camera are described by a ridgid body motion,
which is a multiplication of an orthonorgal matrix R ∈ R

3×3 representing the
orientation transformation of a vector and a subsequent translation by a vector
t, i.e. v′ = Rv + t, in R

3. The whole procedure transforms a vector to a new
position with new orientation. In homogeneous coordinates the translational
part and the rotation matrix are placed in a single 4 × 4 matrix:

D =

(

R t

0 1

)

The number of degrees of freedom is thus six, three for the rotation (axis and
angle) and three for the translation.

3.1 Summary

Transforming a point from world coordinate system to image plane coordinate
system involves the following steps:
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• Transform P
3 → P

2:





x

y

u



 = P









X

Y

Z

W









= KPsD









X

Y

Z

W









• Perspective divide:

ximg =
x

u
yimg =

y

u

All together P has eleven DOF (six extrinsic and five intrinsics). Having these
parameters we can construct a perspective projection matrix. More about ho-
mogeneous coordinates, projective matrices and camera models can be found
in [6], [5], and [8] as well as in [7] and [4].

4 Calibration

4.1 Extracting Intrinsic and Extrinsic Parameters

Before going deeper into the actual process of calibration, we extract the intrinsic
and extrinsic parameters from a perspective projection matrix. Therefore the
matrix P is decomposed into an upper right matrix R and an orthogonal matrix
Q using Givens rotation. Then the matrix R is equivalent to the calibration
matrix K and the orthogonal matrix represents the orientation matrix R. In
order to get the camera position the linear system Pc = 0 has to be solved [4].

4.2 Estimating a Projection Matrix

Being able to map points given in 3D space to a 2D image plane, we now
concentrate on the actual calibration process. Therefore we want to estimate
the matrix P on the basis of a set of corresponence points in 3D space and on
the image plane. Consider the linear mapping of one point, i.e.





x

y

u



 =





p1

p2

p3













X

Y

Z

W









,

where pi denotes the ith row of the projection matrix P. Writing out this
multiplication yields:

x = p1X, y = p2X, w = p3X,

and after performing the perspective division it holds that

ximg =
p1X

p3X
, yimg =

p2X

p3X
.

Multiplying the denominator and bringing all terms on one side finally yields:

p1X − p3Xximg = 0, p2Y − p3Xyimg = 0,
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which can be written in terms of matrix-vector multiplication:

(

X 0 Xximg

0 X Xyimg

)





p1

p2

p3



 = 0,

abriviated by

Ai





p1

p2

p3



 = 0 with Ai ∈ R
2×12

Given a set of N correspondence points {xi ↔ Xi} in 3D space and on the image
plane we can create a series of matrices Ai that are merged into a big matrix
A simply by concatenating these matrices row after row. The final matrix has
therefore 12 columns and 2N rows. Note that the camera has 11 DOF whereas
the vector encoding the projection matrix has 12, we have to enforce 11 DOF
by setting the norm of projection vector to 1 [1].
Given six points this system can be solvable uniquely (note that one line in
the matrix A has to be omitted). Usually more than six points are given and
therefore an optimization problem has to be solved by minimizing ‖Ap‖ = 0.
Note that rank(A) = 11 and therefore there is one non-trivial solution defined
up to a scalar factor. The following algorithm (taken from [4]) summarizes the
described ideas including a proposal for solving the linear system:

• Given N correspondence points: ximg ↔ X

For each correspondence create Ai

Assemble matrix A out of Ai

Use singular value decomposition (SVD): A = UDVT

Pick the singular vector p corresponding to the smallest singular value

5 Application: C-Arm CT

As mentioned in the introduction, the methods derived above are now applied to
C-Arm CT systems. The problem they suffer from is that the trajectory of both
source and detector are not on a perfect circle, thus the Feldkamp algorithm
for reconstruction the volume is not working without producing artefacts. It
showed however that these perturbations are deterministic and therefore repro-
duceable. A C-Arm system samples the volume of interest from about up 550
positions with a sample rate of 0.4 degrees [3]. Deviations from the ideal circle
were measured in [3] as well. The idea is now to estimate projection matrices
from exactly these positions and integrate this in the Feldkamp algorithm. In
practice this has to be done once and year by placing a marker phantom into the
scanner. This marker phantom has about 100 - 150 positions whose correspo-
nence points in the volume and the in projected images from each location can
be determined. With the help of the calibration algorithm from above a series of
projection matrices is retrieved from every possible location of the source [2]. In
the Feldkamp algorithm the backprojection is then modified such that it works
with homogeneous coordinates:
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For every p r o j e c t i on i
f o r every voxe l ( vx , vy , vz )

(x , v ,w) = P[ i ] ∗ ( vx , vy , vz , 1 )
Backpro ject ( x/w, y/w)

Note that this algorithm can implemented incremental, yet the perspective di-
vide is inevitable. Moreover the matrices do not have to be decomposed in order
to retrieve extrinsic and intrinsic parameters.
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