Line Integral

f(x, y)

Integrated values of some parameter of an object along a straight line through the object.

two-dimensional function representing a parameter of the object $x\cos\theta + y\sin\theta = t$ line equation

 $P_{\theta}(t) = \int_{(\theta, t) \text{line}} f(x, y) ds$ line integral

Projection

A projection is a set of line integrals.

- 1st generation tomographs acquire a projection consisting of multiple parallel line integrals. This is repeated for different angles.
- 2^{nd} generation tomographs require less translational steps as they take multiple line ٠ integrals measured along fans simultaneously.
- 3rd generation devices use only one fan beam projection for every angle.
 4th generation tomographs rely also on fan beam projection whereas the have fixed detectors.

Measuring

The loss of beam intensity is measured. This loss happens due to:

- Compton effect: The x-ray photon interacts with a free, or loosely bound electron. It is deflected and losses energy.
- Photoelectric absorption: An x-ray photon losses all energy to a tightly bound inner electron in an atom.
- Pair Production: Can occur when x-ray photon energy is greater than 1.02 MeV. An electron and positron are created where the x-ray photon is annihilated. More important for PET.

All effects are energy-dependent.

cm.

The photon loss due to these effects is denoted by the attenuation coefficient μ which is given by:

(1) $\frac{\Delta N}{N} \cdot \frac{1}{\Delta x} = -\mu$.

The intensity of the x-ray beam after passing through Δx is given by:

,where μ is assumed to be constant. As Δx goes to zero we obtain

(3)
$$\lim_{\Delta x \to o} \frac{N(x + \Delta x) - N(x)}{\Delta x} = \frac{dN}{dx} = -\mu N(x).$$

Integrating on both sides

(4)
$$\int \frac{dN}{N(x)} = -\mu \int dx$$

results in

(5)
$$\ln |N| = -\mu x + C$$

As N is always positive and under the initial condition that $N(0) = N_{in}$ we obtain

$$(6) N(x) = N_{in} \exp\left[-\mu x\right].$$

Replacing the constant μ by $\mu(x, y)$, (6) is enhanced to

(7) $N = N_{in} \exp\left[-\int_{xy} \mu(x, y) ds\right]$

whereas all hitherto formulas are only true for monochromatic photons. Taking into account that x-ray consists of polychromatic photons (7) is altered to

(8)
$$N = \int S_{in}(E) \exp\left[-\int_{ray} \mu(x, y, E) ds\right] dE.$$

Hounsfield scale

The values produced by a tomography are Hounsfield units (HU). Distilled water has been defined as 0 HU and air as -1000 HU. The relationship to the attenuation coefficient is given by:

$$H = \frac{\mu - \mu_{water}}{\mu_{water}} \times 1000$$