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Multigrid Methods — Definition

Multigrid (MG) methods in numerical analysis are a group
of algorithms for solving differential equations

They are among the fastest solution techniques known
today
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Different CFD solvers
Typical design of CFD solver

{ CFD solver }

/\

[ Coupled solver } [ Segregated solver J
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SIMPLE Algorithm

Typical design of CFD solver

* segregated, sequential solution

of decoupled transport
equations

e pressure correction equation:

a tight tolerance for
guaranteeing mass
conservation

- Multigrid methods

[ Preprocessing ]

»
»

»
»

Momentum Equations

|
J

v

Pressure Correction Equation

v

time loop

Turbulence Equations

Non-linear loop

v

(outer iterations)

J

other equations...

J

L

[ Postprocessing ]
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Coupled Solution Algorithm

Typical design of CFD solver

..

[ Preprocessing ]

»
»

« momentum equations and

»
»

pressure correction equation |7 ~
are such discretized that one [ Momentum Equations ]
gets a big coupled block ) L v
' S5 Pressure Correction Equation
o O
equation system - 1AL : )
° S 8| o ~
_ _ GE’ = 'q:) Turbulence Equations
« this equation system becomes = é =1 v
very large — fast solver . = other equations...

necessary

J
|

—>Multigrid methods

[ Postprocessing ]
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Coupled Solution Algorithm

Typical design of CFD solver

« Big coefficient matrix consisting of the momentum matrixes, the
pressure correction matrix and coupling matrixes

* The solution vector contains velocity componentes and pressure

/éuu (=) Q éuP ) u qu
(z) éw Q évP \7 — qV
(=) (=) ANW éwP V_V qW

\é\Pu é‘Pv é‘Pw é\PP JL r)_ _qp_
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Basic Definitions

Methods for Solving Linear Systems of Equations

 Linear System of Equation:
Au =f

DU, =1

A: sparse matrix of size nxn, symmetric, pos. diagonal elements, non-positive off
diagonal elements (M-Matrix)

u: exact solution
V: approximation to the exact solution

« Two measures of v as an approximation to u:
(Absolute) error: e=u-v
Residual: r=f—-Av
 Measured by norms:
L. — norm: ||e||oo = max

I<j<n

%

n
ej‘ L, - norm: ||e||2 = ;ef
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Direct vs. Iterative Methods

Methods for Solving Linear Systems of Equations

* Direct methods
— 1.g. Gauss elimination / LU decomposition
— solve the problem to the computational accuracy
— high computational power

* |terative methods / Relaxation methods
— Gauss-Seidel / Jacobi relaxation
— Solve the problem only by an approximation
— could be sufficient and so be less time consuming

16.06.2009




lterative methods

Methods for Solving Linear Systems of Equations

e Jacobi relaxation:

1
(n+l) — _ § : (n)
i

j#i
e Gauss-Seidel relaxation:

1
(1) _ (n+1) (n)
U, . fi- D au™-> aul
i

j<i >
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Properties of Iterative methods

Methods for Solving Linear Systems of Equations

 Example: Poisson equation

-u" =0
u(0)=u(n)=0
 Discretisation: U, +2U -U,
J- J It
h? )
U, +2u,-u,,, =0 1<j<n+1l
u,=u,=0
« Exact solution: u=0

errore=u—-v =-v
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Properties of Iterative methods

Methods for Solving Linear Systems of Equations

« Different starting values:

Sinus waves: V= sin (—j Fourier modes
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Properties of Iterative methods

Methods for Solving Linear Systems of Equations

 Error vs. Number of iteration

0.75 ¢

0.50

Error

0.25 ¥

lterations
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Properties of Iterative methods

Methods for Solving Linear Systems of Equations

. Realistic Starting value: Vj :%{Sln(ﬂj+Sln(@j+5|n(32”7):|

1.00 1
k=1:
“low frequency wave” ‘
k — 6: 0.75
“medium frequency wave”
k =32: E sl

“high frequency wave”

0.25¢

[terations
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Properties of Iterative methods

Methods for Solving Linear Systems of Equations

o Error: written in eigenvectors of A:
0 n-1
e®=>cw,
k=1

* Eigenvectors correspond to the modes of the problem

e Our problem: (kT
Wy | :SIH(TJ l1<k<sn-1
1<k<l Neksn-1
2 2
Low frequency modes High frequency modes
,D0 not dissappear ,Disappear”
Smoother

16.06.2009 15



Improvements of iterative solvers

Geometric Multigrid

..

« |dea: Have a good initial guess

—->How? Do some preliminary iterations on a coarse grid (grid with
less points)

Good, because iterations need less computational time

« How does an error look like on a coarse grid?
It looks more oscillatory!
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Improvements of iterative solvers

Geometric Multigrid

How does an error look like on a coarse grid?

k = 4waveon n = 6grid

—> If error is smooth on fine grid, maybe good to move to coarse grid.
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Possible schemes for improvement

Geometric Multigrid

« Nested iteration:
— Relax on Au =f on a very coarse grid
to obtain an initial guess for the next finer grid

— Relax on Au = f on Q*"to obtain an initial guess for Q"
— Relax on Au =f on Q*"to obtain an initial guess for Q"

— Relax on Au =fon Q" to obtain a final approximation to the
solution.

e Problems: RelaxonAu=f on Q*"?
Last iteration: Error still smooth?
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e 2nd possibility: Use of the residual equation

Au =f
Au —-Av =f —Av

Ae =r
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Possible schemes for improvement

Geometric Multigrid

e Correction scheme:

— Relax on Au =f on Q" to obtain an approximation v"
— Compute the residual r =f - Avh
Relax on the residual equation Ae =r on Q*"
to obtain an approximation to the error e2"
— Correct the approximation obtained on Q"
with the error estimate obtained on Q%"; v" « v" +e*"
« Problems: Relaxon Ae=ron Q*"?
Transfer from Q*"to Q"7
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Transfer operators

Geometric Multigrid

« Transfer from coarse to fine grids: Interpolation / Prolongation

Q= - QF

« Transfer from fine to coarse grids: Restriction

Q" L Q*F
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Transfer operators — Interpolation / Prolongation

Geometric Multigrid

* Interpolation / Prolongation: from coarse to fine grid
/.\ /'\

/ \\—ow/‘ﬁt\nh
012345\/789101112

"
Iy,

« Points on fine and on coarse grid: v, =V:

1
« Points only on the fine grid: Vi = E(Vj Vi,
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Transfer operators — Restriction

Geometric Multigrid

» Restriction: from fine to coarse grid

TP S ST C U MR SO
0 1 2 3 4 5 6 7 8 9 10 11 12
12
Rt - i A e e th
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Properties of transfer operators

Geometric Multigrid

Interpolation / Prolongation Restriction
- _
2
11
2 12 1
| tt 121
2 =5 2 =2 12 1
2 h —
1 4
1
5 !
1

. - T
Variational property: |2hh :C(hfh)

2
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Properties of transfer operators

Geometric Multigrid

..

e Transfer of vectors: v

e Transfer of matrix A: A" - A?"

« Geometric answer: A®" is discretisation of the problem on the

coarse grid

« Algebraic answer:  A*" =17"A"l},

(Galerkin condition )

16.06.2009
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Recapitulation

Geometric Multigrid

» [terative methods can effectively reduce high-oscillating errors until
only a smooth error remains

e Smooth errors look less smooth on coarse grids
« Transfer of vectors and matrices from coarse to fine grids possible with
two conditions:
Galerkin condition ~ A*" =12"A")

Variational property |§h =C(|fh)T

How can we put this in a good solution algorithm?
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V-Cycle

Geometric Multigrid

e Relax on A"u" =f" v, times with initial guess v"
e Compute f*" ="r"
e Relax onA*"u®" =f?"v, times with initial guess v2h
e Compute f*" =[;"r*"
e Relax on A*"u*" =f*"V, times with initial guess v4"
e Compute " =12 *"

e Solve A"'yth =fth

e Correct V" « v+ v
e Relax A"u*" =f*" v, times with initial guess v4h
e Correct v?" — v +12v*"
e Relax A*"u®" =f*" v, times with initial guess v2h
e Correctv" « v" +I0 v
e RelaxA"u" =f" v, times with initial guess vh
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V-Cycle

Geometric Multigrid

Relax

Restricition \

2h
4h

8h

/ Prolongation

16h
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Other cycles — W Cycle

Geometric Multigrid

2h

4h

8h
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Other cycles — Full Multigrid Cycle (FMG)

Geometric Multigrid

Vy-times

A

Vy-times

A

vy-times

A

2h

4h

8h

16.06.2009

30




Geometric vs. Algebraic multigrid
Algebraic Multigrid

e Geometric Multigrid: structured meshes
e Problem: unstructured meshes, no mesh at all

e - Algebraic Multigrid (AMG)
Questions:
1) What is meant by grid now?
2) How to define coarse grids?
3) Can we use the same smoothers (Jacobi, Gauss-Seidel)
4)  When is an error on a grid smooth?

5) How can we transfer data from fine grids to coarse grids or vice
versa?
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Grid

Algebraic Multigrid

« GMG: known locations of grid points
well-defined subset of the grid points define coarse grid

 AMG: subset of solution variables form coarse grid

Au =f
o
u= u,2
_un_
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Smooth error
Algebraic Multigrid

 Defined as an error which is not effectively reduced by an iterative
method

« Jacobi method: e'™ = (I —D"A)e’

- Measurement of the error with the A-inner product: [€], = (Ae,e)y2
e Smooth error: ||(| -D*A)e L =lell
||e -D7Ae| =|e],

. ||D‘1Ae||A 1 el
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Smooth error
Algebraic Multigrid

e Smooth error:

[p~Ae], O[],

(D‘lAe,Ae) 1 (e,Ae)

(D‘lr,r)D (e.r)

n

r’ . &
> 10 >re

i=1 aii i=1
- |n|0 & e
Ae =0
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Implications of smooth error
Algebraic Multigrid
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Selecting the coarse grid - requirements
Algebraic Multigrid

 Smooth error can be approximated accurately.

« Good interpolation to the fine grid.

« Should have substantially fewer points,
so the problem on coarse grid can be solved with little expense.
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Selecting the coarse grid — Influence and Dependence
Algebraic Multigrid

o Definition 1:
Given a threshold value 0 <8 <1, the variable (point) u. strongly
depends on the variable (point) u; if:

-a, = dmax{-a,}

k#i

o Definition 2:
If the variable u; strongly depends on the variableu;,
then the variable u, strongly influences the variable u.
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Selecting the coarse grid — definitions
Algebraic Multigrid

 Two important sets:

S;: set of points that strongly influence i,
that is the points on which the point i strongly depends.

S, :{j LTy 2 Hrqu{_a‘k}}

S set of points that strongly depend on the point i.
s' ={j:iOs}}
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Selecting the coarse grid - Example
Algebraic Multigrid

« Poisson equation: —Au =0

Uiy 20 - Uy, Uja + 20 - Uy
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Selecting the coarse grid - Example
Algebraic Multigrid

Discretisation on 5x5 grid:

For example, Point 12:

1

h_z('u7 -Uy, +4U, -U - U, ) =0
a,, =1
,,, =1
s =S ={j 8 20 rﬂix{‘aik}} s,, ={7,11,13, 17}
A7 =£—11 S/ :{j :i DSJ.} S, :{7, 1113, 17}
Q12 =
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Selecting the coarse grid - Example
Algebraic Multigrid

..

1) Define a measure to each point of its potential quality as a coarse (C)
point: amount A of members of S
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Selecting the coarse grid - Example
Algebraic Multigrid

2) Assign point with maximum A to C-point

3) All points in S' become fine (F) points

4) For each new F point j: increase the measeure A, for all each
unassigned point k that strongly influence |: k IS,

5) Do 2)-4) until all points are assigned
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Definition of transfer operators
Algebraic Multigrid

» Interpolation: from coarse to fine grids
e, if 1C
) e) = .
(2h )i > e, if iOF
ioc;

« Each fine grid point i can have three different types of neighboring
points:

The neighboring coarse grid points that strongly influence i
The neighboring fine grid points that strongly influence |

Points that do not strongly influence i, can be fine and coarse grid
points

—> This information is contained in &,
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Example
Algebraic Multigrid

 Example:

* Discretised with a two-dimensional mesh, divided into 4 parts;

-au, -cu, *+bu, =0

a=1000 a=1
c=1 c=1
b=0 b=2
a=1 a=1000
c=1 c=1
b=0 b=0

16.06.2009
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Example
Algebraic Multigrid

Grid 2h
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Example
Algebraic Multigrid

Grid 4h
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Example
Algebraic Multigrid

Grid 8h
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Advantages & Disadvantages of AMG

Algebraic Multigrid

10°

=
Q
N

[
S
A

Normalized Residual
S 5

SIP (Iterations: 2410)
V-Cycle (3 Grid-Levels)
W-Cycle (3 Grid-Level)
FMG-Cycle (3 Grid-Levels)

H

o
N
o

1 L1 L L |
100 200 300 400 500
Number of Iterations

'_\

o
N
N
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Advantages & Disadvantages of AMG

Algebraic Multigrid

Advantages
 Fast and robust
 Good for segregated solvers (SIMPLE)

Disadvantages

 The Galerkin Operation is a very expensive step
« Diffucult to parallelize

* High setup-phase

* High storage requirements

* Not for coupled solvers

- A cure are the aggregation based AMGs

16.06.2009
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Aggregation based AMG

Algebraic Multigrid

*In the simplest case strongly connected coefficient are simply
summed up

sExample:

| | |
18 | 19 | 20 | 21 |22 |23

13 | 14 | 15 | 16 |17 |12

7 8 9 10 {11 |12

1 12 |3 (4 |5 |6 o cell 7 influences strongly cell 1
» cell 2 influences strongly cell 1
e Dbuild a new cell | from cell 1,2,7
» do the same to get the new cell
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Aggregation based AMG

Algebraic Multigrid

18 | 19 | 20 | 21 |22 |23
) 13 | 14 | 15 | 16 |17 |12
7 38 9 10 |11 |12
| 1 2 3 4 5 6

*To get the coefficients of the new coarse linear equation system sum

up
‘A=Az 13T A7 g AL e
‘A=Az 7t Ag 7 g
AFALTA A 7

.AI L, II:A8,8+A9,9+A13, 13+A14,14+A15,15+A18,18+A19,19+A20,20
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Aggregation based AMG

Algebraic Multigrid

Advantages

« The Galerkin operation becomes a simple summation of coefficients
 The setup-phase becomes very fast
 The procedure is easy to parallelize

* Through giving maximum and minimum size of cells on coarser grids, one can
pre-estimate memory effort

* in a finite volume method, the coefficients are representing flux sizes from one
cell to another, through summation on keeps the conservativness of the
discretized system over all coarser levels

Disadvantages

 The convergence rate becomes small compared to original AMG, but in the
case of solution of the non-linear Navier-Stokes equation the reduction of the
residual within one outer iteration has not to be very tight, reducing of about
one to two orders of magnitude suffices

- The Agglomeration AMG is ideally applicable to the coupl ed solution of
Navier-Stokes Equation System
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Thank you!

Discussion
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