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1 Introduction 
Multigrid Methods are a group of algorithms in numerical analysis for solving linear 

systems of equations. They are especially eligible for elliptical problems, for example 

the Poisson equation. This type of equation arises among others from the 

discretisation of the pressure correction equation in the solution of the Navier-Stokes 

equation. The advantage here is the linear dependence of the solution time from the 

number of grid points N which could be stated as optimal. In this work, two different 

multigrid methods (geometric multigrid and algebraic multigrid) are presented and the 

differences between them are shown. Additionally their application to computational 

fluid dynamics is demonstrated with an example.  

 

2 Typical design of CFD solvers 
There are basically two approaches for the solution of the Navier-Stokes equation, 

the coupled solver and the segregated solver. The Navier-Stokes equation is a non-

linear system of equation. It contains 4 unknowns, three velocity components and the 

pressure, but consists only of three equations. Therefore the conservation of mass is 

used as an additional equation. In the segregated solver one uses an iterative 
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scheme for the solution . First the momentum equation is solved with the pressure 

distribution from the last time step while in a second step the fluid velocity is 

corrected based on the pressure from the pressure-correction equation. This 

pressure-correction equation is a Poisson equation whose coefficient matrix is ill 

conditioned. Nevertheless the solution of the pressure-correction equation is needed 

to a tight tolerance for guaranteeing mass conservation. This makes a fast, robust 

linear solver necessary which can be achieved by multigrid methods. The coupled 

solver discretises the momentum and the pressure correction equation in such a way 

that one gets a big coupled block equation system which solves the pressure and the 

three velocity components in one matrix system. This system can become quite large 

which explains the need for a fast linear solver based on multigrid methods. 

 

3 Basic methods and their properties for solving linear 
 systems of equations 
In the coupled as well as in the segregated approach one gets a linear system of 

equations given by 

     u f=A  
or in components    

     =∑ ij j ia u f  

In this context u is the exact solution, A is a sparse (symmetric) matrix of size n×n 

and v denotes an approximation to the exact solution u. There are now two important 

measures of v as an approximation to u: 

• Absolute error e given by 

    e u . v= −

 The problem is that the absolute error is inaccessable as the exact solution 

 itself. 

• Residual r;  is the amount by which the approximation v fails to satisfy the 

original problem Au=f: 

    r f v= − A . 

Both measurements are vectors and can be measured by any vector norm, like the 

L2 or the L∞ norm: 
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In general, there are now two possibilities for the solution of the linear system of 

equations, direct methods and iterative or relaxation methods. Direct methods like 

Gauss elimination solve the problem to the computational accuracy but have high 

computational costs. Iterative methods instead solve the problem only by an 

approximation but this could be sometimes sufficient and therefore less time 

consuming. Two iterative methods are the Jacobi relaxation and the Gauss-Seidel 

relaxation. The idea of the Jacobi method is to solve the ith equation for the ith 

unknown using the approximations from the last iteration for the other unknowns. It 

can be written by 

   +

≠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑( 1) ( )1n n

i i ij
j iii

u f a u
a j . 

The Gauss-Seidel method incorporates a simple change: components of the new 

approximation are used as soon as they are computed: This means that components 

of the approximation vector v are used as soon as they are updated: 

   
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑(n+1) (n+1) (n)
i i ij j ij

j<i j>iii

1u = f - a u - a u
a j . 

Applying these iterative methods one can observe that the error decreases each 

iteration. But after some iterations the error does not reduce anymore. One can 

explain this behaviour assuming the error being a vector sum from the eigenvectors 

of the matrix A: 

   . 
−

=

= ∑
1

1

n

k k
k

c(0)e w

These eigenvectors are connected closely to the eigen modes of the problem. If we 

now apply an iterative method, it is found out that the error components from high-

frequent eigenvectors (or modes) disappear soon and the error components from 

low-frequent eigenvectors (or modes) do not disappear. Therefore these iterative 

methods are also called smoothers. 

 

4 Geometric Multgrid 
The open question is now how to improve these iterative methods in order to reduce 

all error components. The idea behind the multigrid methods is now to have at least 

two different grids of different size, one coarse grid and one fine grid. One can show 

that the error on the coarse grid looks more oscillatory than on the fine grid or in other 
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words the error on a fine grid looks less smoth than on a coarse grid. This can be 

used now for the following procedure. First oen applies an iterative scheme on a fine 

grid until the error only consists of smooth, low frequent components. Then this error 

is transformed to the coarse grid where it looks more oscillatory. If we now relax on 

this grid it should effectively eliminate additional error modes. This could be 

continued with more than one coarse grid but it leaves the problem if the error is still 

smooth on the fine grid. Another possibility is the use of the residual equation and 

applying the following scheme, called the correction scheme: 

• Relax on u f=A  on  to obtain an approximation vhΩ h 

• Compute the residual r = f-Avh and relax on the residual equation  on 

 to obtain an approximation to the error e

e r=A
2hΩ 2h 

• Correct the approximation obtained on hΩ  with the error estimate obtained on 

:  2hΩ 2v v e← +h h h

Here  with superscript h denotes the fine grid while hΩ 2hΩ  with superscript 2h 

denotes the coarse grid. This basic scheme could also be used for more than one 

coarse grid which will be shown later. Based on this scheme the following formal 

steps have to be defined:  

• Selection of the coarse grid(s) 

• Definition of transformation operators for vectors and the matrix A from coarse 

to fine grids and vice versa 

In geometrid multigrid the selection of coarse grids is based on geometric relations, 

for example in a one dimensional problem every second fine grid point is defined as a 

coarse grid point. With this relation it is possible to design as many coarse grids as 

desired. 

The definition of transformation operators is splitted into two parts. The 

transformation from coarse to fine grids is denoted as interpolation / prolongation and 

the transformation from fine to coarse grid is called restriction. The prolongation is 

defined as a linear interpolation. In the one-dimensional case this is given by 

   2
2 =h h

j jv v  

if the point is both on the fine and on the coarse grid and by 

   2 2
2 1 1

1 (
2

h h
j jv v v+ += + )h

j    
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2
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 - 4 - 



if the point is only on the fine grid. This relation can be seen in Figure 1.  

 

Figure 1: Interpolation / Prolongation in the one-dimensional case 
 
 
 

The restriction is normally calculated by full weightening which means that the coarse 

grid point is defined by an weighted average of its neighbours. For the one-

dimensional case it is given by (compare Figure 2) 
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or the one-dimensional case the restriction operator and the prolongation operator 

• Restriction operator: 

Figure 2: Restriction in the one-dimensional case 
 

F

can also be written in matrix form: 
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• Prolongation operator: 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2

1
2
1 1

2
1 1

1 2
2

1
... 1

2
1

h
hI  

It can be seen that the restriction and the prolongation operator are transpose to 

each other except for a constant: 

    ( )2
2

Th h
h hI c I= . 

This property is called variational property. Another important concept is the 

calculation of the matrix 2hA  on the coarse grid. This can either be done by 

discretizing the problem on the coarse problem or in general by multiplying the fine 

grid matrix hA  with the prolongation and restriction operator (called Galerkin 

condition): 

    =2 2
2

h h h
h h

hA I A I . 

Now its possible to apply any multigrid scheme, for example the V-cycle which is 

based on the correction scheme. It is build up by arbitrary coarse grids and is called 

V-cycle because it goes from the finest grid down to the coarsest grid and the up 

again (compare Figure 3): 

● Relax on   u f=h h hA 1ν  times with initial guess vh

● Contents  =h h
hI

2 2f r h

 ● Relax on   2 2 2u f=h h hA 1ν  times with initial guess  2v h

● Compute  4 4 2
2f r=h h

hI h

● Relax on  4 4 4u f=h h hA 1ν  with initial guess  4v h

● Compute  8 8 4
4f r=h h

hI h

    . 

    ● Solve  (maybe possible with direct solver) u f=Lh Lh LhA

    . 
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  ● Correct v v  4 4 4
8

8v← +h h h h
hI

● Relax  4 4 4u f=h h hA 2ν  times with initial guess v  4h

4v← +h h h h
hI ● Correct v v  2 2 2

4

● Relax  2 2 2u f=h h hA 2ν  times with initial guess  2v h

● Correct v v  2
2 v← +h h h h

hI

● Relax on u f=h hA h  

2ν  times with initial 

uess

 

a multigrid scheme like the V-cycle from 

geometric to algebraic  to define the following things in an 

algebraic sense: 

 grids and vice versa 

g  v h  

 

 

 

 

 

 

 

 

 

 

 

 

5
 Algebraic Multigrid 
Geometric multigrid is very effective if a problem is solved on a structured mesh but 

for many problems an unstructured mesh is necessary where it is difficult to define 

coarse grid based on geometric relations. Instead one wants to define coarse grids in 

an algebraic sense. But for transforming 

 multigrid one also needs

• Smoothness of an error 

• Transfer of vectors and the matrix A from coarse to fine

• Applicability of smoothers (Gauss-Seidel, Jacobi) 

h 

2h 

4h 

8h 

16h 

Relax 

Restricition 

Prolongation 

Figure 3: V-cycle 
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In algebraic multigrid an error is defined as a smooth error if  

≈A 0e      

or in components: 

    
≠

+ ≈∑ii i ij ja e a e  
j i

    

0

ii i ij j
j i

a e a e
≠

≈ −∑  

That means a smooth error can be approximated by a weighted average of 

“neighbouring“ variables.  

An important concept for the selection of the coarse grid is the definition of strong 

influence and dependence. Both definitions take into account that for diagonal 

dominant matrix the ith row is associated with ith unknown. Of course, it usually takes 

ation variables to determine any given variable precisely but maybe it is 

ossib f variab

alue 

all of the equ

p le to have a preselection o les that are more important than others 

Definition 1: 

 Given a threshold v 0 1θ< ≤ , the variable (point) strongly depends on 

 the variable (point) 

iu  

u j  if 

  { }maxij ikk i≠

This says that the variable i strongly depends on grid

a aθ− ≥ − . 

 point j if the coefficient  is 

 magnitude to the largest off-diagonal coefficient in the ith equation. 

We ca n

Definit

 ija

comparable in

n state this defi ition from another perspective. 

ion 2:  

If the variable iu  strongly depends on the variable ju , 

the thn e variable ju  strongly influences the variable . 

strongly influenc

   that is the points on which the point i strongly depends. 

   

 iu

Two sets can be derived from these two definitions. 

 iS :  set of points that e i, 

{ }{ }θ
≠

= − ≥ −i ij k i
S j a a: max  ik

 S : set of points that strongly depend on the point i. T
i

   { }= ∈T
i jS j i S:  

The e coarse grid. The coarse grid 

sho

se sets are important for the selection scheme of th

uld fulfil the following conditions: 
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• Smooth error can be approximated accurately  

Good interpolation to the fine • grid 

, so the problem on the coarse grid can 

The selection process is carried out like this: 

ntial quality as a coarse (C) point: 

• Should have substantially fewer points

be solved with little expense 

 1) Define a measure to each point of its pote

 amount λi of members of iS  T

λ 2) Assign point with maximum i  to C-point 

 3) All points in iS  become fine (F) points T

λk 4) For each new F point j: increase the measeure  for all each unassigned 

 point k that strongly influence j: ∈ jk S  

 5) Do 2)-4) until all points are ass  

If the coarse grids ar

igned

e selected, transformation operators must be defined between 

the grids. In general the component ( )2
h
h i

I e  of a vector on the fine grid can be 

e this: determined lik

  ( ) ω
∈

∈⎧⎪= ⎨ ∈
⎪⎩
∑

i

i
h
h

ij j

e if i C
ei

j C

I e if i F2  

The interpolation weights ijω  have information about the neighbouring, off-diagonal 

elements which can be divided into the neighboring coarse grid points that strongly 

fluence I, the neighboring fine grid points that strongly influence I and into points 

ce I (fine and coarse grid points). 

For testing the algebraic multigrid a test case (compare [3]) was set up. The Poisson 

in

that do not strongly influen

 

6 Examples 

equation is solved in four different variants at four different domains:   
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The coefficients a, b and c are different on each domain: 
    

a=1000 a=1 
c=1 c=1 
b=0 b=2 

    
    

a=1 a=1000 
c=1 c=1 
b=0 b=0 

    
The equation is discretized using the finite volume method and solved on a 100 x 100 

mesh. Figure 4 till Figure 6 show the three first coarse levels with red points being the 

coarse variables on the next grid. 
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     Figure 4: Grid 2h 
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     Figure 5: Grid 4h 
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     Figure 6: Grid 8h 

7.  Advantages and Disadvantages of Algebraic Multigrid 
Advantages of algebraic multgrid are that the solution is fast and robust and is very 

effective for segregated solvers.  

Disadvantages are that the triple matrix operation at the Galerkin step is a very 

expensive step and hard to parallise. The definition of coarse grids leads to a high 

setup-phase and high storage requirements. Additionally this algorithm is not suitable 
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for coupled solvers where the aggregation based algebraic multigrid is a cure against 

it [1]. 
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