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Problem 1. Deformation of
M elastic body without obstacle

Small deformations in the body:
_ Vu+ V'iu
2

Balance equations:
divio(u))=-K

Boundary conditions:

u =0

Solution: Ue [Cl(ﬁ)m Cz(Q)]n ﬂ‘ =F
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Problem 2. Contact of elastic
™ body and rigid obstacle

Balance equations:

divo(u))=-K

Boundary conditions:

u,, =0

Condition of non-penetration:

U, <&,

Signorini conditions:
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Solution: u e [Cl(ﬁ)m Cz(Q)]n o,=0, ecm u,<g,




Problem 3. Contact of two
M rigid bodies

Balance equations:

divo(u))=-K

Boundary conditions:

Conditions in contact area:
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Solution: u e [Cl(ﬁ)m Cz(Q)]n \Gn‘@(}l - 071‘5392 5



Problem 3. Integrated

1 statement

= Classical statement
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Integrated statements of contact
problems
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= Problem 1

= Problem 2

1 Minimization of functional

= Problem 3

a(u,v)=1(v) vy e[ (@)

alu,y—u)>1(v-u),VveR

alw,y-u)2l(v-u),VveJ
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= Bottom bounded

= Coercive

veA




Algorithm for solving contact
q problems

Variati inite-di i Numeric algorithm
ariation Finite-dimensional |
statement l model Data preparation
Computation

Input: rigidity matrix of the system K
vector of initial gap g,
vector of applied loads F

Solving minimization problem:
obtain the vector of displacements U, which brings the minimum
to the functional 7, IU)=U"-K-U=-2-F"-U

with the restrictions U<g,
Output: gap field in the contactarea  G=g,-U



Problems of applicability to the
q models with great curvature
I

Modeling of junction of the models with slight curvature of surfaces
Applying loads in normal direction

Computing displacements in normal directions

Great tangential displacements Ambiguity in gap definition
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1 Test model description

~  fixations




Tangential displacements in
M gap calculation

| Difference in solutions

Value of : : n oz
tangential  rel =—=100% With and without £ = ‘G ¢ 100%
displacements u, including tangential G
displacements unif
0 0
a=)> 1| 3.29 =73 1| 0.09
F=5kg 2| 3.62 F =3kg 2| 081
3 3.47 3 0.39
4 3.55 4 0.13
a =90° 1| 36.94 a =90° 1l 0.13
2| 150.45 2 0.27
F=5kg F=17kg
3| 63.86 3 0.10
4| 87.07 4 026] .,




Comparing the methods of

gap definition

As the difference between initial
gap and normal displacements:

G=g —-U

According to the model geometry:

En

G

=

Difference in solutions with the two

methods
‘Gdif . Ggeom
E =
Gunif
0
=73
F=22kg
1 0.00
2 0.01
3 0.00
4 0.01

100%
a =90’
F=50kg
1| 0.86
21 034
3| 041
41 0.80
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Comparing results of solution
M with ANSYS
I

Difference in solutions with

aIszterLﬂwDed ANSYS the two algorithms
g ‘ GANSYS _ 5 ‘
E= 100%

a=>5" a =90°
F=5kg F=29kg

1 0.70 1 2.33
2 491 2 2.90
3 3.31 3 1.60
4 1.39 4 4.19




q Conclusion

Mathematical statements of contact problems without friction were
investigated

Solvability of these contact problems was proved on basis of
minimization of convex functional

Applicability of developed fast algorithm for solving contact problems
to modeling of junction of models with great curvature was
investigated

Good correspondence of the results obtained with developed algorithm
and finite element complex ANSYS was demonstrated

Tangential displacements don't influence on the c_?ap value, what
allows to apply the developed algorithm to modeling of junction of
models with great curvature
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Thank you!
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