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• Introduction and objectives
• Model description
− Gas phase modeling
− Liquid phase modeling
− Modeling of injection

• Results of flame suppression by fine water spray
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• Advantages:

– Water is environmentally friendly and 
toxically safe extinguishing agent

– Cheap, clean, available
– Effective if optimized (may prevent 

unacceptable damage to protected 
property )

– A possible halon (CF3Br, CF2BrCl, …) 
substitute (such FEA are prohibited)

FEA – Fire Extinguishing Agent
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• Understanding fundamental mechanisms of the 

interaction of fine water spray and turbulent diffusion 
flame

• Development of the appropriate mathematical model 
of a evaporating spray

• Incorporation of the model into the
existing in-house software - Fire3D

• Computational study of interaction
of water spray and buoyant turbulent 
diffusion flame

DV50=200 μ
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• Initial droplet size is a key parameter that switches 

extinguishment regimes
• Fine water spray is special: behaves similar to the gas 

(total flooding) extinguishing agents

• High pressure 
fine water spray 
can be more 
efficient

• Why and when?

Fine 
spray

Coarse 
spray

This range of droplet sizes This range of droplet sizes 
has not been thoroughly has not been thoroughly 

investigatedinvestigated
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• Two opposite requirements:

− efficient delivery is needed for wetting of flame surface
− rapid droplet evaporation is required for 

cooling of the flame
• Water spray physics: two droplet delivery regimes

−Large droplets, coarse spray – gravity mode (weak plume-
spray interaction, droplet penetration is determined by 
droplet diameter)

− Small droplets, fine spray – momentum mode (strong 
plume-spray interaction, penetration may not occur, it is 
determined by the ratio of spray and plume momentums)

• Optimal solution can’t be universal – it depends on a possible 
fire scenario, geometry etc.

• Need in careful CFD modeling and costly simulations
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Euler-Lagrange approach :
• gas phase – multicomponent reacting mixture
• dispersed phase – large number of droplets

Full interaction assumed (two-way coupling):
• droplet-gas heat transfer
• droplet evaporation (mass transfer)
• momentum exchange 
• droplet dispersion due to turbulence
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• Navier-Stokes system based on Favre-averaged 

component, momentum and enthalpy transport 
equations

• Modified k-ε, eddy break-up and thermal radiation 
models are used as closing relationships

• Low Mach number flow is considered
• Finite volume technique for discretization

Langman et al, 2007
A – momentary image

B – photo with exposure
(analogue to averaging)
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• Lagrangian approach to model evaporating spray - multiple 

discrete droplets are tracked along their trajectories in gas-
flow with given characteristics

• Momentum, mass, energy conservation equations are 
considered for groups of similar droplets (particles)
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Turbulence Turbulence 
may have a may have a 
considerable considerable 
effect!effect!

Droplet dispersion
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Droplet mass loose due to evaporation
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• Sprinkler is modeled here as a point source
• Rosin-Rammler distribution to model polidispersity
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• Schwille & Lueptow experiment
• 15 kW, 18 cm diameter burner, methane
• dv50 = 0.630 mm
• 3–11.7 l/min
• 120º cone angle, 

1.6 m height
• Spray cone is much 

wider than the 
flame base
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• Comparison with experiments
• Calorific power 15kW

• Transient simulation of the gas flame are then used as 
initial conditions for case with spray

IsosurfacesIsosurfaces of temperature T=200of temperature T=200°CC
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dV50 = 0.080 mm

3.0 l/min
dV50 = 0.630 mm

7.5 l/min
dV50 = 0.250 mm

7.5 l/min

Fine spray:Fine spray:
•• Narrowed Narrowed 
jet, vortex ringjet, vortex ring
•• Vapor cloud Vapor cloud 
does not does not 
penetrate but penetrate but 
surrounds the surrounds the 
flameflame

Coarse spray:Coarse spray:
•• spray anglespray angle
•• evaporates evaporates 
inside the flameinside the flame
•• small drops small drops 
deflecteddeflected
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• Spray dynamics and flame-spray interaction is very sensitive to 
initial spray dispersion

• Fine spray suppresses flame faster with smaller water supply rate 
because of: (i) faster evaporation; (ii) higher and more focused
momentum

Coarse spray, dV50 = 0.630 mm
15 kW, 7.57 l/min

Fine spray, dV50 = 0.080 mm
15 kW, 7.57 l/min

Effect of initial spray dispersion
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• The fine spray produces the amount of vapor which is 
by more than an order of magnitude greater than that 
produced by the coarse spray

• Fine spray extinguishes the flame within few seconds 
after the nozzle activation
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• Model of evaporating spray is developed and 
incorporated into CFD software

• Mechanisms of spray-flame interaction are identified 
and demonstrated

• Fine water spray causes faster flame extinguishment 
with smaller water flow rate
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Thank you!

Discussion


