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Introduction

* Motivation

> Computational Combustion is the most difficult area
of Computational Fluid Dynamics (CFD)

> Tight interaction between phenomena of different
nature: turbulence, combustion and radiation

> Wide spectrum of engineering applications:
furnaces, turbines, engines, fires

> Powerful computational software (Ansys Fluent etc.)
and multiprocessor computers
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Introduction

* Primary aim
Accurate modeling of real-life problems like fires and
industrial combustors using reliable verified models

* Obijectives

> Pose model problem (test flame) with detailed
statement and experimental data

> Examine conventional engineering models

> Research capabilities of advances chemistry
models like slow chemistry and pollutant emissions

> Research capabilities of large eddy simulation
turbulence model
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Problem description

- Obiject of research

Sandia Flame D (Sandia National
Laboratories, CA, USA)

- Experimental data
. High-precision laser measurements

- Mean and root-mean-square (RMS)
profiles of temperature, velocity
components, concentrations of 9 major

species
. Axial and 8 radial profiles
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Problem description

Sandia Flame D
» Jet flame with pilot-stabilizer

* Premixed methane-air mixture
- Highly reduced pollutant formation
- Accurate experimental measurement
- Avoiding flame extinction

* Fully developed turbulence

Reynolds number, based on jet speed
Re=22400
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Problem description

High-precision laser measurements
Raman spectrometry

Scattering

PIV measurements

High-spesed
framing camera
PIV laser
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T — Dye laser
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Sheet optics N YAG lasar
‘_‘\r L |~ » cluster
ﬁ' . IIL = | Quartz plate
PV cameras '

CO, OH LIF measurements

230-nm
Eeam Profile
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.
Rayleigh
Scattering
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Problem statement

Problem domain and boundary conditions
Defined:

* Pressure
» Backflow parameters

Defined:

* Velocity

* Temperature
 Turbulence

* Mixture composition

FUEL PILOT CO-FLOW
h &

Defined: . b
* Velocity ( <1 2D
« Temperature i 1
 Turbulence

» Mixture composition
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Mathematical model

Favre-average (filtered) Navier-Stokes equations for

multicomponent reacting medium
Continuity equation:

P, P, _
ot Ox.

J

Momentum trg

0

ot Ox Ox

J
Species transpg

ot Ox

RANS Turbulence models:
k-¢ Standard
k-¢ RNG
k-& Realizable
k-w Standard
k-w SST
RSM Linear
RSM Quadratic
RSM Low Reynolds

LES Smagorinsky

J
Enthalpy trans
oph | opu h P

ot Ox . ot
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Mathematical model

Favre-average (filtered) Navier-Stokes equations for

multicomponent reacting medium
Continuity equation:

% i, _
ot Ox,

J

Momentum tran%)rt equation:
opi; |, cpuii,  opulul oP o1,

0 ®

—

Chemistry models:

Eddy Break-up model
(EBU)

Mixture fraction based
statistical model (PDF)

= _|___
ot . . o UE

. ox, j i 9
Species transporft\eJquahon:
epY, dpuyY,  opulY! oF,
[0 + — _ _ )

Ot Ox Ox Ox
Enthalpy transport fe\qjuation:
Ph pih oGP dpulh’ 9
ot Ox ot Ox ox

J

N7,

(th +uU.T.

Radiation models:

* Discrete transfer
* Discrete ordinates

i lj)_aq_;
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Mathematical model

Turbulence models

> Family of k-¢ turbulence models
Turbulent kinetic energy and its dissipation rate

* Family of k-w turbulence models
Turbulent kinetic energy and specific dissipation rate

* Family of Reynolds Stress models
Six turbulent stresses separately

* Large Eddy Simulation model
Subgrid turbulence models without additional equations

ap() ‘%ﬁj(')_ 0 _ -
e g b)) )

J Production  Dissipation
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Mathematical model

Chemistry models

* Eddy Break-up model
Fast chemistry assumption (infinitely fast reactions)

~

~ : Y
iﬂa:Aﬁ%mln[Y L g p”""}

Juel ™ 1+
0x

ox

» Statistical model (mixture fraction approach)
> Equilibrium chemistry | j?
Incapability of predicting slow chemistry Y
- Flamelet models e L T
» Thin flame assumption N\ ;/
|

- Large-scale curvature of flame |
» Capability of using detailed chemistry mechanisms
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Test simulations

Axial Velocity [mis]

Inlet boundary profile impact
> Velocity experimental profile

seriously affects the flame

> Scalar experimental boundary

profile impact on the flame is
negligible
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Test simulations

Domain dimensions impact
> Domain widening is unreasonable
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Test simulations

Approximation order impact
- Discretization order does not seriously affect physical fields
> Still 2-nd order discretization will be used further
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Test simulations

Radiation impact

* Radiation consideration affects only

temperature field (700 K higher peak value)
 Scalar fields are not seriously affected by

radiation

* Radiation was considered in all simulations
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Simulation results

Turbulence and chemistry modeling strategies:

Favre time-averaging

Large eddy simulation

(RANS) (LES)
Eddy break-up
model (EBU) (8142) ('] x1)
Statistical
model (PDF) (8){4) ('] x1)

+ Accounting for radiation
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Reynolds time-averaging (RANS)

Temperabure [K]

Chemistry: Eddy Break-up model | &

- Peak temperatures are greatly %

overestimated (about 300 K) e

* Peak concentrations of reaction products gﬁ

are-areatlv averastimated (ahant 15.40%) |

'y Is it possible to correct the
Eddy Break-up model?
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Reynolds time-averaging (RANS)

Temperabure [K]

Eddy Break-up model improvement M

1600
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1400

* Generally accepted value of A-constant is 4.0 ‘ 120

- (= ¥, Y
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fells 1t
* Optimal constant value is A=1.0

* Significant variation of constant means poor model
adaptability to different types of reacting flows
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3000 -
Theory interlude . 2500}
o Experiment
S 2000}
Chemistry: statistical model 2 1500[ £ e
- . T 1000 } f=* equilibrium
Transport equation for a-specie: " '
opY, OpuY, oF,, . 28
(o =— —+7 L ] 1 ] 1
ot x, ox 00 02 04 06 08 10
Combining different equations: Mixture fraction
ap(quel_Ya/Sa)+apuj(quel_Ya/Sa)_ a pQJ; a()/fuel_yalsa)zo

ot Ox . Ox . ox .

Mixture fraction is a corjlcrete con]served scalér:
Y = You ! S, _( fauie”l -Y, /Sox)
) Yffulel - Yojg Is,, — (Yfiierz - Yoc)zcirlsox)
Using equilibrium dependencies:

Y,=Y,(2) T=T(Z) p=p2)

Averaged quantities with B-function as density function:

Y, = jYa (Z2)P(Z)dZ T = jT(Z)ﬁ(Z)dZ = ( [p? (Z)ﬁ(Z)dzj
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Reynolds time-averaging (RANS)

Tempearabure [K]

Chemistry: statistical model E

1600
1500

* Significantly more accurate flame prediction ( 130

* Correct peak values of temperature and
reaction products e

* More narrow and long flame than in Eddy
Break-up model
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Reynolds time-averaging (RANS)

Temperature (K] U°

1800

Turbulence models ) E

1500

* Best models with two additional turbulence | 150
equations: k-¢ Realizable and k-w SST 1o

* Quadratic Reynolds Stress model (RSM) is o
the most accurate stationary model

* k-& Standard, k-€ RNG, k-w Standard, RSM
LowRe models are significantly worse
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Theory interlude

* Favre time-averaging (RANS) is a conventional
engineering approach

* Large Eddy Simulation (LES) capabilities
> Less modeling, more calculation

> Enables explicitly resolve
energy-bearing long-wave
part of vortex spectrum

> High computational cost

> Currently introduces
in engineering practice

Lage
Edilyez
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1
-1 SN
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g -
~ Computmg mn LES ~ Modelmg mLES
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- - -—
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Large Eddy Simulation (LES
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Large Eddy Simulation (LES)..—..

Mean Temperaiure [K]

Chemistry model
* Eddy Break-up model for LES is more

accurate than Eddy Break-up model for RANS
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» Statistical model is still preferable
* Good agreement for 2-nd order statistics
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Large Eddy Simulation (LES)

Tem perature [K]

Turbulence comparison
* Perturbations were not generated at inlet (LES) &

* Good agreement for LES up to the peak

* The simplest LES model is inferior only to the
most comprehensive RANS model

* LES (as Quadratic RSM) predicts correct

shape of the flame
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Large Eddy Simulation (LES)

Velocity spectrum
* The spectrum -5/3 region is captured quite well

Power spectrum density [(m?/s?)/Hz]
o

10°
10| —— z1d=50
— Zid = 40
105... —_— zld =33
—_— zld=25
10_6 i i | [ 1 Ll L
10° 10° 10*
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Velocity [m/s)
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Theory interlude

Lanunar
flainelet
stimcture

Chemistry: flamelet model

Statistical model complication - flame structure
in mixture fraction space

2
)20 |
ot 2% oz i
- scalar dissipation (parameter)

2 2 2
axl axz axs [ k - Hame
I

Scalar dissipation is proportional to strain rate /

Characteristics: el = —— P——
- Capability of using detailed chemistry mechanisms \ f
* Thin flame front assumption | (
* Fast flame adaptation to flow field assumption 1 /
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Statistical chemistry

Flamelet construction
» Scalar dissipation does not affect temperature and major species

* Intermediate species are highly scalar-dissipation-dependent
* Still some serious numerical deviations near y=0
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Statistical chemistry

Flamelet construction

30/37
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Statistical chemistry v
e
Flamelet model =
* Flow, scalar and major species fields are 1;;-@-‘3
quite the same as in Equilibrium chemistry w
* Intermediate species fields are significantly -
improved

* Bad NO field prediction due to specific
processes of NO formation
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Computational resources

° A cluster

Cores count:
Processors:
Memory:

Network connection:
Peak performance:
Operating system:

* g cluster

Cores count:
Processors:
Memory:

Network connection:
Peak performance:
Operating system:

Laboratory of
Applied Ny o
Mathematics and
Mechanics

256 (64 nodes)
AMD Opteron 280
512 Gb

Infiniband

1035 GFLOPS
SUSE Linux

16 (4 nodes)
AMD Opteron 265
8 Gb

Gigabit Ethernet
35 GFLOPS
Windows CCS
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Models computational efficiency

* Chemistry: Eddy Break-up model is significantly faster than statistical
model (PDF)

* Turbulence: RSM Quadratic Model is optimal stationary model
* |n general: More accurate model requires more calculation time
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Cluster computational efficiency

Efficiency

* Windows CCS and Linux SUSE have equal paralleling efficiency in

this type of simulations

* ¢ cluster capabilities are insufficient for Large Eddy Simulations LES

* Computational time on A-cluster: 5 weeks on 48 cores
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Code efficiency

Fluent simulation Shekli et al.* simulation
» 725 000 computational cells * 930 000 computational cells
* 16 (real) processors * 6 processors

* 25 000 time steps * 50 000 time steps

* 840 hours * 110 hours

~ (930000 j:“ 1/6 50000 1/110
725000 ) 1/16 25000 1/840

General conclusion:

Fluent specific code efficiency is 50 — 200 times poorer
than in-house code

* - M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, S.B. Pope

“Large eddy simulation of a turbulent non-premixed piloted methane
jet flame (Sandia Flame D)”, Proc. of Comb. Inst., 30, 2005 35/37



Conclusions
> Simple turbulence and chemistry models usage leads to
severe errors in turbulent flame simulations

» Statistical Chemistry model significantly excels Eddy
Break-up model

* RSM Quadratic, k-¢ Realizable and k-w SST stationary
turbulence models are recommended

* Large Eddy Simulation provides lots of additional
information but requires much computational time

* Windows CCS and Linux SUSE equals in paralleling
efficiency on Fluent software
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Future work

* Detailed research of flamelet chemistry models
and reaction mechanisms

* |nspecting boundary perturbations impact on
flame structure in LES

* Processors load balancing research

* Accurate pollutant emission models incorporation
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Danke schon fur lhre Aufmerksamkeit!
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