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1. Introduction. The reqular Sturm - Liouville problem.

—(P(X)y(x)')+a(x) y(x) = AW(X) y(X)
X € (a,b)

(a, b) - open interval
{p., q, w} - coefficients defined on the open interval ( a, b)

A - spectral parameter




Boundary conditions:

* Reqular (R)
* Singular (S)
* Separated
e Coupled

Regular boundary conditions:

- Separated boundary conditions
Ary'(a)+ A,y(a) = 0
B,y'(b)+ B,y(b) =20

- coupled boundary conditions
y(a) = y(b)

(py")(a) = (py )(b)



Eigen solution of the regular Sturm - Liouville problem -
{4.y}

A— eigenvalue, for which differential equation has
nontrivial solution

— eigenfunction, corresponds to eigenvalue,
satisfies boundary conditions



The regular Sturm - Liouville problem & Schradinger
problem

—(P(X)Y(X))+a(X) y(X) = MX)y(X), X € (&,b)

(a, b) - is the integration interval and the boundary
conditions

= Y(x)"+a(x)y(x) = Ay(x),x € (a,b)

(a, b) - is the integration interval and the boundary
conditions



2. The Two - Center Problem in quantum mechanics.

Ay (riR)+2(E - £2 22y, (r:R) =0

I I

h=m,6=¢
Z, and Z , - nuclear charges

'y and T, - distance between electron and £, £,
R - internuclear distance

E=E(R) - energy term




<




Prolate spheroidal coordinate system

= . 77:
R

¢ , p=arctan(y/x)

¢ =1Ln=+1 - coordinates of charge Zl

¢=Ln=-1 - coordinates of charge <,



l’”j :l?”kqm(él’ n, (01 R) — qum(R)ka(é/; R)qu(n, R)eimgp

j ={k,g,m} - set of quantum numbers
k - principal quantum number
- orbital quantum number

M - maghetic quantum number

J‘W*kqm(f, 7, (0, R)l//k-q-m. (é:, n, (0, R)dvzgkklgqq'gmm'
Vv
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dg

d d N2 ol _
o (1- 772)d—77qu(7z R)+[ —A-p" (117 )+b77—g]qu(77§ R) =0

5 —Dd%xmk(;; R - -D)+as——T X (ER) =0

E,R?

2
pj - 2
a=(Z,+Z,)R, b=(Z,-Z,)R - charge parameter

A= lﬁ)(p, a), 1= ﬂ“x]q) (p,b) - separation constants

(p>0) - energy parameter

A’ (p,a) =23 (p,b)



Quasiradial equation
d
Ve
‘ka(l; R)‘ < G

1
¢ -1

(& —1)0% X,o(C: R+ AP D) ral— T 1X (£ RI=0

Xl & R)‘ —>0,4 €[}, )
g—x0

Jaffé expansion
t=(-1)/(+]1) - transformation of variable
¢—t, -1>+0w0, 10, co—>+1 - transformation of equilibrium points

G €[l;0) >t €[01) - transformation of interval



D\ _ DS (2 \mi2 o f;_—s
KGR = () 0 ¢+]17
o=al2p—(m+J)

a.0., 9. +7.0.,=0 - three- termed relation between
coefficients (.

a=(S+1(s+m-+1)
L. =25(s+2p—0)—(M+0)(M+1)—-2po+ 1
7, =(s—1-9)(s—m-1-9)



Eigenvalues of the problem are found from the condition of
nullifying of the continued fraction.

_ v}y _
F(p,a,ﬂ)_,b’o—ﬂ _%..._O
1 182_
slys _1_ O
/Bs 1135 S—>°0 ( )+ ( )

Coefficients of three - termed relation converge for all p>0
It follows from the equation above.
The ratio of the series coefficients

ggs” — 1— 2\/p+ O (ﬂ)
S S S

provides the convergence of Jaffé expansion on the complete
interval te[01) or ¢ e[l )




Quasiangular equation

di(l_nz)iqu( 7, R)+[ _i_ pz(l_nz)_l_b U‘i ]qu(é/i R) =0
7 dr7 1-

Yoo(£L R)|[<o0; ~1<p<+1



Baber - Hasse expansion
qu (77’ R) = e—pﬂ Z Csl:)ernrm (77)
s=0

PsCou—XsC+0,C ;=0 - relation between three - terms
coefficients C,

(s+2m +1)(b-2p(s+ m + 1))
2(s+m) + 3
Y. =(s+m)(s+m+1)-41
sf[b + 2p(s + m)]
* 2(s+m)-1

Ps =




The ratio of succeeding series coefficients at large
indexes:

C s+1 __ £ O
C. S s w

Solutions of A 5)( p, a) =/1r(n7é)( P, b) can be found from the equation

o)
FO (p,b, A) =k, — 22 =0
2%
K, —
Continuous fraction converges due to following limit:
2
ps—l5s (Z_DJ
Zs—lZs 30 S




B Plot Q rflam) - | e

Plot Q@ r(lam)

Parameters

gl = |-2




E: Plot Q_r(lam)

Plot Q@ _r(lam)

Parameters
gql = -2
a2 = | 3
R = 15
m = 0
P = 3
laml = —-200
lam2 = 0
Nmax = >0
E Plot
| Clear

| Quit




& Plot Q rilam)

Plot Q@ r(lam)

Parameters
ql = |2 ‘
a2 = | 3
R = 15 .
m = 0
P = 2
laml = (—-200
lam2 - 0
Nmax = =0
|
| |
|
Plot | I
Clear |

Quit |




B Plot Q_u(lam)

Plot Q@ u(lam)

Parameters
gl = -2
(g2 = | 3
R = 15
m = 0
P = 1
laml = —-200
lam2 - 0
Nmax = 50
Flot
Clear

Enait




B Plot Q_u(lam)

Plot Q@ u(lam)

Parameters
gt — 2
(g2 = | 3
R = 15
m = 0
P = 3
laml = —-200
lam2 - 0
Nmax = 50
| Plot
| Clear

| Quit




B Plot Q_u(lam)

Plot Q@ u(lam)

Parameters
gl = -2
g2 = | 3
R = 15
m = 0
P = 5
laml = —-200
lam2 - 0
Nmax = 50
Flot
Clear

Enait




[ & Plot lam_r(p) 2 » Send Feedback (SEESN|
Plet lam x (p)
Parameters
gql = |—-2
g2 = 3
R = S
m = 0
pl = | 1
p2 = | 10
dp = | 0.1
laml = —-200
lam?2 =
- _
View parameters | T | | Plot | | Step |
p min =[ 1 lam min = |—200
pmax =[ 70 Ao 0 | Restore ||| Clean | | Quit |




E: Plot lam_r{p) Send Feedback l—EE'-J

Y
Plot lam x (p)
Parameters
ol — |-2
g2 = 3
R = S
m = 0
pl = | 1
p2 = | 10
dp = | 0.1
laml = —-200
lam?2 =
K = | 4
View parameters | T | | Plot | | Step |
p min =[ 1 lam min = |—200
pmax =[ 70 Ao 0 | Restore ||| Clean | | Quit |




3. SLEIGNZ

General-purpose programs for computing the eigenvalues and
eigenfunctions of Sturm - Liouville problem

* Program SLEIGN has been developed by Bailey, Gordon and Shampine ,
programming language FORTRAN

 Code in the NAG Library has been developed by Pryce and Marletta ,
programming language FORTRAN

* Program SLEDGE has been developed by Fulton and Pruess ,
programming language FORTRAN

* Program SLEIGNZ has been developed by Bailey Everitt and Zettl
programming language FORTRAN



To meet the needs of numerical computing techniques was
made the following assumptions:

1. The interval ( a, b) of R may be bounded or unbounded
2. p,qand w are real-valued functions on (a, b)

3. p, q and w piecewise continuous on (a, b)

4. p and w strictly positive on (a, b)

Conditions on the coefficients:
Minimal conditions:

p~", g, wel(a,b)
p(x), W(x) >0

Smoothness conditions:

p, p',q, weC(a, b)
p(x), W(x) >0



Endpoint classification

To classify endpoints a and b, it is convenient o choose a
point ¢ € (a,b)

e ais Reqular (R), if
—o<a<+
p,q, w - piecewise continuous on [ a, c]
p(a)>Ow(a)>0

*A is Singular (S), if
a—=-+o0 or

a € R, but j{( p(x)) " +|a(x)|+ w(x)}dx = +oo



* The singular endpoint a is Limit Point (LP) if for
some real A atleast one solution of differential
equation satisfies the condition

jw\y\zdx = +o0

« The endpoint a is Weakly Regular (WR) if —oo<a &

j(p‘1+\q\+w) dx < 400



» The singular endpoint is Limit-Circle Non-Oscillatory(LCNO)
if for some real value of spectral parameter 4 ALL real-
valued solutions y(x A) satisfy the conditions

c 2
j wly| < +
and Y(XA) has at most a finite number of zeros in (a, ¢ ]
« The singular endpoint is Limit-Circle Oscillatory(LCO)

if for some real value of spectral parameter 4 ALL real-
valued solutions  Y(XA) satisfy the conditions
c 2

_[W|y| < + o

and Y(XA) has an infinite number of zeros in (a, ¢ ]



SLP problems are classified into various classes based on the
classification of the endpoints and on whether the boundary
conditions are separated (S) or coupled (C). We have the following
categories:

1. R/R, Separated

2. R/R, Coupled

3. R/LCNO LCNO/R, Separated

4. R/LCNO LCNO/R, Coupled

5.R/LCO LCO/R, Separated

6.R/LCO LCO/R, Coupled

7.LCNO /LCO LCO/ LCNO LCO/ LCO, Separated
8. LCNO /LCO LCO/ LCNO LCO/ LCO, Coupled
9.LP/R LP/LCNO LP/LCO R/LP LCNO/LP LCO/LP
10.LP/LP



The algorithm in SLEIGNZ2

« Initial interval (a, b) is converted to interval (-1,+1)
in the SLEIGN2 package

» The computation procedure is implemented by
the use of Prifer Transform.



Prifer Transform.

y(x) = p(x)sin(@(x))
(Py)'(x) = p(x) cos(@(x))

Differential equation for o & 6:
g (x) = p(x) ™ cos (8(x))+ (A(x) —q(x))sin* (6(x))
£ ()] p(x) = (p(x) ™ = A(X) +d(x))sin(@(x)) cos@(x))

Boundary conditions for &:

0(a) =-arctg(A, / A)
6(b) — n =—arctg(B, /B,)



The following disadvantages were found in the program package
SLEIGNZ:

* The interface of the program is organized on the base of console
dialog. This approach considerably increase the time for defining the
problem paramters.

« The program is unstable fowards the input : if numbers are taken in the
incorrect format (say, with comma instead of dot) or letters are taking
instead of number. In this case the program is terminated and it is
required to start work from the very beginning.

« Additional program MAKEPQW is required in order to create own
examples.



Solution in BARSIC (Business And Research Scientific
Interactive Calculator)

« Numerical algorithms from SLEIGN2 remain unchanged.
Subroutines of SLEIGN2 package (programming language
FORTRAN) are compiled into 'dll' file (‘'so’ files in case of OS
Linux ) and then they are called from BARSIC programs.

 Additional functions for calculation of first and second derivatives
were created (It's necessary to write them in FORTRAN when
SLEIGNZ is used directly)



- BARSIC Sleign?2 - solving the Sturm-Liuville problen

Eile  Parameters View Information about the problern About

Probkblem: THE LEGENDRE EQUATION

EQUATION: —{ p(x)*y'(x) )' + g(x)*y(x)= Eigen Value * w(x) * y(x)
pi=) =1 - x¥*x
q(x) 1/4
wix) = 1

Interval: .. Boundary Conditions ...

Number of Eigen Value = 9§ E 5 eigen value = 90.2452011108398

eigenFunction

-5
.0
-5
.0
-5
.0
-5
.0
-5
.0
"o




Send Feedback g

Left bound ¥1: LIMIT CIRCLE NON-0OSC >
A1%[y,u] (leftBound)+ A2*[y,v] (leftBound)=0
.- - W
Right bound X2: LIMIT CIRCLE NON-0SC v
Al*y(leftBound)+ A2+*p(leftBound)*y' (leftBound)=0
- W B2= '

R
0.5%In((1.0+x)/ (1.0-x))




= BARSIC Sleign2 - solving the Sturm-Liuville probler

Eile  Parameters View Information about the problem About
Problem: THE LEGENDRE EQUATION
EQUATION: —( p(x)*y'(x) )' + q(x)*y(x)= Eigen Value * w(x) * y(x)
plx) =1 - x*x
gix) = 1/4
wix) = 1
Interval: S -1 1 | Boundary Conditions .. |
Number of Eigen Valus =| Q9 % ’ Solve eigen value = 90.2452011108398
g —{Function Rho
N L . L
] L
7T — * e * » ]
L g
T . * * - - - - * * .
6 — & . - . . . i a
5 __ - - » % * * * * » - . ®
* » b » *
7] - &
4 _| ., . 4 » . bl . . *
o * * A
= ,.,'.‘ * . » » - L ] '.‘,.,
3 ; » . * . s * . ™ ;
- » L ] - - * -
2 — * & - - * 8
m : * L] L] - l:‘
* *
1 b - . . ] -
T X
| T I T | T I T | T I T | T I T | T I T | T I T | T T | T I T | T I T | T T |
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8




"B BARSIC Sleign2 - solving the Sturm-Liuville probles

Problem:

File  Parameters View Information about the problemn  About

THE LEGENDRE EQUATION

EQUATION: - ( p(x)*y'(x) )' + g(x)*y(x)= Eigen Value * w(x) * y(x)

plxli=n] — x*x
q(x) = 1/4
wix) = 1
Interval: x = -1 1 |§ Eoundary Conditions ..
Number of Eigen Value =| 9 % [ Solve eigen value = 90.2452011108398
Function Theta
30 —
25 —
"
20 —
PP T L
-
15 — aHEaEE & sanant®
-
.mnmnmmnmﬂﬂ
10 ip-wuwnﬂf
5
0 —
| T | T | T | T | T | T | T | T T | T | T | T | T | T | T | T | T | T | T |
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8




F BARSIC Sleign2 - solving the Sturm-Liu probler m'm -

File  Pararneters View Information about the preblemn  About

Problem: THE BESSEL EQUATION

EQUATION: -—( p(x)*y'(x) }' + g(x)*y(x)= Eigen Value * w(x) * y(x)
p(x) 1
o (x) (0.75*0.75-0.25) /x*2
w(x) 1

Interval: == 0 .. Boundary Canditions ...

Number of Eigen Value = 7] | I eigen value = 651 .2373046875

eigenFunction




vend Feedback

E BARSIC Sleign2 - solving the Sturm-Liuville problen

File  Parameters View Information about the preblem  About

Problem: A WEAKLY REGULAR EQUATION

EQUATION: —{ p(x)*y'(x) )' + g(x)*y(x)= Eigen Value * w(x) * y(x)

pix) = sqrt (abs (x))
q(x) 0
wix}) = 1/sqgrt (abs (x))

Boundary Conditions

Interval: x= 0

Number of Bigen Value =| §K

% eigen value = 88.8362655639648

eigenFunction

%

e




The comparison between SLEIGNZ and well known
mathematical packages (Mathematica, Maple, COMSOL
Multiphysics) shows that SLEIGNZ2 is more efficient
from the point of view time of computation and
numerical errors. Moreover, is not possible to solve
problem with coupled conditions in Maple and
Mathematica.
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Thank you for attentionl
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