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(a, b)  – open interval

{p, q, w} - coefficients defined on the open interval ( a, b)

λ - spectral parameter
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1. Introduction. The regular Sturm - Liouville problem.



Boundary conditions: 

• Regular (R)
• Singular (S)
• Separated
• Coupled

Regular boundary conditions: 

• separated boundary conditions
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• coupled boundary conditions
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Eigen solution of the regular Sturm - Liouville  problem -
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eigenvalue, for which differential equation has
nontrivial solution
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−y eigenfunction, corresponds to eigenvalue, 
satisfies boundary conditions

ψ
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The regular Sturm - Liouville  problem &  Schrödinger 
problem
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(a, b) – is the integration interval and the boundary
conditions
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(a, b) – is the integration interval and the boundary
conditions



2. The Two – Center Problem in quantum mechanics.
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and - nuclear charges

and – distance between electron   and ,
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)(REE= - energy term

R - internuclear distance
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Prolate spheroidal coordinate system
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- coordinates of charge 

- coordinates of charge        
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- set of quantum numbers   

- principal quantum number

- orbital quantum number

- magnetic quantum number
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,                           - separation constants



Quasiradial equation
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Jaffé expansion

- transformation of variable

- transformation of equilibrium points

- transformation of interval
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coefficients sg
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Eigenvalues of the problem are found from the condition of 
nullifying  of the continued fraction.
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Coefficients of three – termed relation  converge for all 
It follows from the equation above.
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The ratio of the series coefficients
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Quasiangular equation
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Baber – Hasse expansion
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The ratio of succeeding series coefficients  at large 
indexes:
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Solutions of                                          can be found from the equation
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Continuous fraction converges due to following limit: 
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General-purpose programs for computing the eigenvalues and 
eigenfunctions of Sturm - Liouville problem

• Program SLEIGN has been developed by Bailey, Gordon and Shampine ,   
programming language FORTRAN

• Code in the NAG Library has been developed by Pryce and Marletta , 
programming   language FORTRAN

• Program SLEDGE has been developed by Fulton and Pruess ,  
programming   language FORTRAN

• Program SLEIGN2 has been developed by Bailey  Everitt and Zettl , 
programming language FORTRAN
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3. SLEIGN2



To meet the needs of numerical computing techniques was 
made the following assumptions:

1. The interval ( a, b) of R may be bounded or unbounded
2.  p, q and w are real-valued functions  on  (a, b)
3.  p, q and w piecewise continuous on  (a, b)
4.  p and w strictly positive on (a, b)

Conditions on the coefficients:
Minimal conditions:

Smoothness conditions:
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Endpoint classification

To classify endpoints a and b, it is convenient to  choose a 
point      ),( bac ∈

• а is Regular (R), if

p, q, w  - piecewise continuous on [ a, c] 
p ( a ) > 0,w ( a ) > 0

•А is Singular (S), if
a or

a R,   but ∫ +∞=++−
c
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• The singular endpoint a is Limit Point (LP) if for  
some real         at least  one solution of differential  
equation satisfies the condition

• The endpoint a is Weakly Regular (WR)  if &
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• The singular endpoint is Limit-Circle Non-Oscillatory(LCNO) 
if for some  real value of spectral parameter        ALL real-
valued solutions              satisfy the conditions 

and              has at most a finite number of zeros in (a, c ]

• The singular endpoint is Limit-Circle Oscillatory(LCO)
if for some  real value of spectral parameter        ALL real-
valued solutions               satisfy the conditions 

and              has an infinite number of zeros in (a, c ]
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SLP problems are classified into various classes based on the 
classification of the endpoints and on whether the boundary 
conditions are separated (S) or coupled (C). We have the following 
categories:

1. R/R, Separated
2. R/R, Coupled
3. R/LCNO   LCNO/R, Separated
4. R/LCNO   LCNO/R, Coupled
5. R/LCO   LCO/R, Separated
6. R/LCO   LCO/R, Coupled
7. LCNO /LCO   LCO/ LCNO LCO/ LCO, Separated 
8. LCNO /LCO   LCO/ LCNO LCO/ LCO, Coupled
9. LP/R  LP/LCNO  LP/LCO  R/LP  LCNO/LP LCO/LP
10.LP/LP
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The algorithm in SLEIGN2 

• Initial interval (a, b) is converted to interval (-1,+1) 
in the SLEIGN2 package

• The computation procedure is implemented by 
the use of Prüfer Transform.
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Prüfer Transform.
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The following disadvantages were found in the program package 
SLEIGN2:

• The interface of the program is organized on the base of console   
dialog. This approach considerably increase the time for defining the  
problem paramters.

• The program is unstable towards the input : if numbers are taken in the  
incorrect format (say, with comma instead of dot) or letters are taking  
instead of number. In this case the program is terminated and it is 
required to start work from the very beginning. 

• Additional program  MAKEPQW is required in order to create own   
examples. 
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Solution in BARSIC (Business And Research Scientific   
Interactive Calculator)

• Numerical algorithms from SLEIGN2 remain unchanged.
Subroutines  of SLEIGN2  package (programming language   
FORTRAN)  are compiled into ‘dll’ file   (‘so’ files in case of OS
Linux ) and then they are called from BARSIC programs.

• Additional functions for calculation of first and second derivatives  
were created (It’s necessary to write them in FORTRAN when 
SLEIGN2 is used directly)
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The comparison between SLEIGN2 and well known 
mathematical packages (Mathematica, Maple, COMSOL 
Multiphysics) shows that SLEIGN2 is more efficient 
from the point of view time of computation and 
numerical errors. Moreover, is not possible to solve 
problem with coupled conditions in Maple and 
Mathematica.
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Thank you for attention!
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