
Solution and visualizaton in The Sturm – Liouville Problem. 

 

1. Introduction. The regular Sturm – Liouville Problem 

Many physical phenomena, both in classical mechanics & in quantum mechanics, are 
described mathematically by  Sturm – Liouville problems (or Shrödinger problems, which are 
special cases of  Sturm – Liouville problems). 

The Sturm – Liouville Problem deals with linear ordinary homogeneous second order  differential 
equation: 

                                                             ሺ1ሻ 

   open interval, where are finite 

 coefficients, defined on the open interval   

  spectral parameter 

The Sturm – Liouville Problem is defined by adding boundary conditions. 

Boundary conditions depends on regular or singular classification of the end points . 
Also they can be coupled and separated. 

Eigen solution of The Sturm – Liouville  Problem  is a set of pairs . eigenvalue,  
eigenfunction. Our goal is to obtain the eigen solution of The Sturm – Liouville  Problem. 

 

2. Two Center problem in quantum mechanics. 

2.1 Shrödinger equation with Coulomb – like potential 

The Shrödinger problems are special cases of  Sturm – Liouville problems. One of well – 
known Shrödinger  Problem is Two Center Problem in quantum mechanics. It’s describes 
mathematically by  Shrödinger equation with Coulomb – like potential. In atomic units  
it can be presented as the following equation:  

                                                                                     (2) 

              and two fixed nuclei 

    and distances between electron and nuclei  and  correspondingly 



            distance between  and  

   energy term 

Eigen solution of  Two Center Problem is a set of pairs . eigenvalue,  

eigenfunction. Our aim is to obtain the eigen solution of   Two Center Problem . 

It is well – known that the Shrödinger equation (2) is separable by using the prolate spheroidal 
coordinate system  , in which the  components of the electron position vector  can be written 
in terms of spherical coordinates as 

 

                                                                                                     (3) 

 

Then the solution of equation (2) can be presented as the following product: 

                                       (4) 

                                             

Here   and   stand for the two – Coulomb – center quasiradial and 

quasiangular wave functions, which are normalized according to  

                                      (5) 

 set of quantum numbers 

  principal quantum number 

 orbital quantum number 

 magnetic quantum number 

Therefore, we have two equations with correspondingly boundary conditions: 

• quasiradial equation 

               (6) 

             



• quasiangular equation 

  ሺ7ሻ 

 

 
 

   energy parameter 

 
charge parameters 

 

; separation constatnts. 

 

                                               (8) 

 

2.2 Quasiradial equation 

 For the quasiradial wave function we use well – known Jaffé  expansion: 

                                                  (9) 

 Transformation of variable: 

 

 Transformation of singular points: 

 

 Transformation of interval: 

 

    

   three – terms relation between coefficients  

   

    



     

Eigenvalues of the problem are found from the condition of nullifying of the continued 
fraction: 

                                    (10) 

 Coefficients of three – terms relation  converge for all : 

 

The ratio of the series coefficients: 

 

 It’s provides the convergence of Jaffé  expansion on the complete interval  or 
. 

 

2.3 Quasiangular equation 

 For the quasiradial wave function we use Baber – Hasse expansion: 

                                                                                  (11) 

   three – terms relation between coefficients  

     

   

            

 The ratio of succeeding  series coefficients  at large indexes: 

 

             

 



Solution of (8) can be found from the following equation: 

                                                                           (12) 

Continuous fraction converges due to following limit: 

 

 

2.4 Computational procedure 

  The computational procedure implemented is as follows: 

• determine a set of roots of continued fractions (10) and (12) as a functions of  “ ” 
 

 
 

 
Fig. 1 Continued fraction (10) as a function of “ ” 



•  fix a root and track it’s position as a function of “p” 
 

 
 

Fig. 2 Traces of 1st, 2nd, 3rd , 4th  roots of continued fraction (10) 
 

•  obtain the point of intersection of functions  and . This point of    

 intersection is a solution of equation (8) 
 

•  determine eigenvalues  

 
•  determine quasiradial and quasiangular wave functions by using (9) and (11) 

 
 

•  obtain eigenfunctions   by using (4) 

 

 

 



3. SLEIGN2. 

3.1 List of general-purpose programs 

General-purpose programs for computing the eigenvalues and eigenfunctions of Sturm - 
Liouville problem: 

• Program  SLEIGN has been developed by Bailey, Gordon and Shampine ,    
 programming language FORTRAN 
 

• Code in the NAG Library has been developed by Pryce and Marletta ,   
 programming   language FORTRAN 
 

• Program SLEDGE has been developed by Fulton and Pruess ,   
 programming   language FORTRAN 
 

• Program SLEIGN2 has been developed by Bailey  Everitt and Zettl ,  
 programming language FORTRAN 

 

3.2 Manual for program package SLEIGN2 

To meet the needs of numerical computing techniques in SLEIGN2 was made the following 
assumptions: 

        1. The interval  of  may be bounded or unbounded 

  2.   and  are real-valued functions  on   

3.   and  piecewise continuous on   

            4.   and  strictly positive on   

Conditions on the coefficients: 

               Minimal conditions: 

 

 

               Smoothness conditions: 

 

 



SLP problems in SLEIGN2  are classified into various classes based on the classification of 
the endpoints and on whether the boundary conditions are separated (S) or coupled (C). We have the 
following categories:    

          1. R/R, Separated 

          2. R/R, Coupled 

             3. R/LCNO   LCNO/R, Separated 

         4. R/LCNO   LCNO/R, Coupled 

          5. R/LCO   LCO/R, Separated 

          6. R/LCO   LCO/R, Coupled 

          7. LCNO /LCO   LCO/ LCNO LCO/ LCO, Separated  

             8. LCNO /LCO   LCO/ LCNO LCO/ LCO, Coupled 

          9. LP/R  LP/LCNO  LP/LCO  R/LP  LCNO/LP LCO/LP 

         10. LP/LP 

 

R – regular endpoint 

LC – limit – circle endpoint 

LP - limit-point 

LCO - limit-circle oscillatory endpoint 

LCNO - limit-circle non-oscillatory endpoint 

 

The algorithm in SLEIGN2: 

• Initial interval is converted to interval in the SLEIGN2 package  

• The computation procedure is implemented by   the use of Prüfer Transform.  

The application of the Prüfer transformation to the Schrödinger equation leads to a nonlinear 
first-order differential equation. It’s look like following: 

 

 



Differential equation for  and : 

 

 

Boundary conditions for : 

 

 

 

3.3 Solution in  BARSIC (Business And Research Scientific  Interactive Calculator) 

• Numerical algorithms from SLEIGN2  remain unchanged.  Subroutines  of SLEIGN 
package (programming language   FORTRAN)  are compiled into ‘dll’ file   (‘so’ files  in 
case of OS   Linux)  and then they are called from BARSIC programs. 

• Additional functions for calculation of first and second derivatives   
      were created (It’s necessary to write them in FORTRAN when  
      SLEIGN2 is used directly)  
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