
1. Motivation. The applications of Fourier Transform in physics. 

The Fourier transform has long been used for characterizing linear systems and for identifying the 
frequency components making up a continuous waveform. However, when the waveform is 
sampled or the system is to be analyzed on a digital computer, the discrete version of the Fourier 
transform must be used. 

The DFT plays an important role in many scientific and technical applications, including time series 
and waveform analysis, solutions to linear partial differential equations, the convolution and the 
correlation of time series, digital signal processing and image filtering.  

The DFT is a linear transformation that maps N regularly sampled points from a cycle of a periodic 
signal, like a sine wave, onto an equal number of points representing the frequency spectrum of 
the signal (so in fact it is a bridge between the time domain and the frequency domain). 

2. Mathematical theory. Continuous Fourier Transform 

Recall the formula for the Continuous Fourier Transform (I’m sure, that everybody has learnt it at 
school) 
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Here the uppercase )( fH  represents the frequency-domain function, the lowercase )(th is the 
time-domein function. 

Discrete Fourier Transform 

The analogous discrete Fourier transform pair that applies to sampled versions of these functions 
can be written in the following form. 

Consider a finite time series, sampled at an interval Δ: >−=< ]1[],...,1[],0[ Nhhhh  
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Denote Ni
N eW /2π= , where e is the base of natural logarithms. The powers of NW  used in an DFT 

computation are also known as twiddle factors. 

Now we can rewrite the formulation of DFT. 
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The computation of each H [j] according to this equation requires N complex multiplications. 
Therefore, the sequential complexity of computing the entire sequence H of length N is Θ(N2) (it 
means that the amount of operations is proportional to the N², so that it grows like N²). 

3. Improvement in DFT-development. FFT. 

In 1965, Cooley and Tukey devised an algorithm to compute the DFT of an N-point series in a less 
amount operations.  The revolutionary algorithm by Cooley and Tukey and its variations are 
referred to as the fast Fourier transform (FFT).  This algorithm is based on the one interesting 
property of DFT – it’s symmetry. 
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If we associate ][][ jHkh ⇔ , then due to the property of symmetry 
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4. Fast Fourier Transform – serial algorithm. 

Several different forms of the FFT algorithm exist. I would like to consider it’s the simplest form, 
the one-dimensional, unordered, radix-2 FFT. Parallel formulations of higher-radix and 
multidimensional FFTs are similar to the simple algorithm because the underlying ideas behind all 
sequential FFT algorithms are the same. 

Let’s consider the computation of H[j] component. 

Assume that N is a power of two: rN 2=  

The FFT algorithm is based on the following step that permits an N-point DFT computation to be 
split into two (N/2)-point DFT computations: 
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Why should we compute N operations for the first value and N operations for the second value, if 
we can compute each sum individually and then just to subtract or add them together?  

This scheme is called butterfly. 



 

We can divide summations further and further and eventually (if N is a power of two) we can get 
each single summand. This leads to the recursive FFT algorithm. This FFT algorithm is called the 
radix-2 algorithm because at each level of recursion, the input sequence is split into two equal 
halves. 

Let’s consider how the recursive algorithm works on an 8-point sequence. 

 

 

 

As we see, there is N2log  levels of recursion (in these example 3log 2 =N ) 

After this decomposition, using the butterfly-algorithm, we can compute the Fourier transform of 
our data. 
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The size of the input sequence over which an FFT is computed recursively decreases by a factor 
of two at each level of recursion. Hence, the maximum number of levels of recursion is Nm 2log=  
for an initial sequence of length N. The total number of arithmetic operations at each level is N and 
the overall sequential complexity of algorithm is ~( NN 2log ). 

Thus, the overall complexity of the original DFT (of length N) is an order of 2N , of the FFT -
NN 2log  

As one can notice, the decomposition of time domain signal is nothing more then the reordering of 
the samples of the signal – so called bit reversal sorting algorithm. 

Original sequence  Rearranged sequence 
decimal binary 

⇒  

binary decimal 
0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 
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Bit reversal does not affect the overall complexity of a parallel implementation of FFT. 

4. Parallel FFT-algorithms 

Due to wide application of FFT in scientific and engineering fields, there has been a lot of interest 
in implementing FFT on parallel computers. Nowadays, several opportunities of parallelizing FFT 
have been found, however this issue hasn’t been investigated completely. I am going to talk about 
two parallel formulations of FFT: the binary-exchange algorithm and the transpose algorithm. 

The Binary-Exchange algorithm 

1. Decomposition is induced by partitioning the input vector => each task starts with one element 
of the input vector and computes the corresponding element of the output vector.  

2. Assign to each task the same label as the index of its input element => in every iteration of the 
algorithm exchange of data takes place between those pairs of task, whose labels differ in one bit 
position. I’ll explain it more detailed some time later. 

4.1 The Binary-Exchange algorithm (a full bandwidth network) 

First, consider the case, when we have a full bandwidth network, it means, that we implement this 
algorithm on a parallel computer on which a bisection width is an order of p, p is a number of 
parallel processes. The algorithm will be described assuming a hypercube network. However, the 
performance and scalability analysis would be valid for any parallel computer with an overall 
simultaneous data-transfer capacity of O (p) (accurate to a constant). 

One Task Per Process 

Let’s consider the simplest mapping in which one task is assigned to each process. rN 2=  
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To perform the updates, process Pi requires an element from a process whose label differs from i 
at only one bit. Recall that in a hypercube, a node is connected to all those nodes whose labels 
differ from its own at only one bit position. Thus, the parallel FFT computation maps naturally onto 
a hypercube with a one-to-one mapping of processes to nodes.  

In the first iteration, the labels of each pair of communicating processes differ only at their most 
significant bits. For instance, processes 0P  communicate with 4P . Similarly, in the second iteration, 
the labels of processes communicating with each other differ at the second most significant bit, 
and so on. 

In each iteration of this algorithm, every process performs one complex multiplication and addition, 
and exchanges one complex number with another process. Thus, there is a constant amount of 
work per iteration. Hence, it takes time an order of Nlog  to execute the algorithm in parallel by 
using a hypercube with N nodes.  

Multiple Tasks Per Process 

Let’s now consider a mapping in which the N tasks of an N-point FFT are mapped onto p 
processes, where N> p. For the sake of simplicity, we will assume that both N and p are powers of 
two, i.e., n = 2r and p = 2d, r and d - natural number. We partition the sequences into blocks of N/p 
contiguous elements and assign one block to each process. 

 

As you can observe, the d most significant bits of the index of any element of the sequence are 
the binary representation of the label of the process that the element belongs to. This property of 
the mapping plays an important role in determining the amount of communication performed 
during the parallel execution of the FFT algorithm. 

Elements with indices differing at their d (in our example d= 2) most significant bits are mapped 
onto different processes. However, all elements with indices having the same d most significant 
bits are mapped onto the same process. Recall that in the first iteration, the labels of each pair of 
communicating processes differ only at their most significant bits. Similarly, in the second iteration, 
the labels of processes communicating with each other differ at the second most significant bit, 
and so on. 
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As a result, elements combined during the first d iterations belong to different processes, and pairs 
of elements combined during the last (r - d) iterations belong to the same processes. Hence, this 
parallel FFT algorithm requires interprocess interaction only during the first pd log=  of the 
nlog iterations. There is no interaction during the last r - d iterations. Furthermore, in each iteration 

from the first d, all the elements that a process requires come from exactly one other process. 

Each interaction operation exchanges N/p words of data.  

Denote: 

st  - is the latency or the startup time for the data transfer 

wt - is the per-word transfer time, which is inversely proportional to the available bandwidth 
between the nodes 

ct - is the time of a complex multiplication and addition pair 

Therefore, the time spent in communication in the entire algorithm is ts log p + tw(n/p) log p. A 
process updates n/p elements during each of the nlog iterations. If a complex multiplication and 
addition pair takes time tc, then the parallel run time of the binary-exchange algorithm for n-point 
FFT on a p-node hypercube network is 
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Hence, knowing these parametres of our parallel computer, we can estimate the time of 
computation, speedup and efficiency. 

Scalability Analysis 

There are two observations: 

1. For a given problem size (problem size is the number of basic computation steps in the best 
sequential algorithm to solve the problem on a single processing element), as we increase 
the number of processing elements, the overall efficiency of the parallel system goes down. 
This phenomenon is common to all parallel systems. 

2. In many cases, the efficiency of a parallel system increases if the problem size is increased 
while keeping the number of processing elements constant. 

Following from these two observations, we define a scalable parallel system as one in which the 
efficiency can be kept constant as the number of processing elements is increased, provided that 
the problem size is also increased. It is useful to determine the rate at which the problem size 



must increase with respect to the number of processing elements to keep the efficiency fixed. For 
different parallel systems, the problem size must increase at different rates in order to maintain a 
fixed efficiency as the number of processing elements is increased. This rate determines the 
degree of scalability of the parallel system. 

In our case, the overall isoefficiency function is given by: 
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Figure shows the isoefficiency curves given by this function for E = 0.20, 0.25, 0.30, 0.35, 0.40, 
and 0.45. The asymptotic isoefficiency functions for E = 0.20, 0.25, and 0.30 are )log( ppΘ . The 
isoefficiency function for E = 0.40 is )log( 33,1 ppΘ , and that for E = 0.45 is )log( 64,1 ppΘ . 

Isoefficiency functions of the binary-exchange algorithm on a hypercube with tc = 2, tw = 4, and ts = 
25 for various values of E. 

 

Figure 13.6 shows the efficiency curve of n-point FFTs on a 256-node hypercube with the same 
hardware parameters. The efficiency E is computed for various values of n, when p=256. The 
figure shows that the efficiency initially increases rapidly with the problem size, but the efficiency 
curve flattens out beyond the threshold. 

Figure 13.6. The efficiency of the binary-exchange algorithm as a function of n on a 256-node 
hypercube with tc = 2, tw = 4, and ts = 25. 



 

As we can see there is a limit on the efficiency that can be obtained for reasonable problem sizes, 
and that the limit is determined by the ratio between the CPU speed and the communication 
bandwidth of the parallel computer being used. This limit can be raised by increasing the 
bandwidth of the communication channels. However, making the CPUs faster without increasing 
the communication bandwidth lowers the limit. Hence, the binary-exchange algorithm performs 
poorly on a parallel computer whose communication and computation speeds are not balanced. If 
the hardware is balanced with respect to its communication and computation speeds, then the 
binary-exchange algorithm is fairly scalable, and reasonable efficiencies can be maintained while 
increasing the problem size at the rate of �(p log p). 

4.2 The Binary-Exchange algorithm (a limited bandwidth network) 

Now we consider the implementation of the binary-exchange algorithm on a parallel computer 
whose cross-section bandwidth is less than )(pΘ . The algorithm and its performance 
characteristics will be illustrated using a mesh interconnection network. Assume that n tasks are 
mapped onto p processes running on a mesh with p rows and p columns, and that p is a 
power of two. Let rN 2=  and dp 2= . Also assume that the processes are labeled in a row-major 
fashion and that the data are distributed in the same manner as for the hypercube; that is, an 
element with index (b0b1···br -1) is mapped onto the process labeled (b0 ··· bd-1). 

As in case of the hypercube, communication takes place only during the first plog iterations 
between processes whose labels differ at one bit.  

What is the difference? 

Unlike the hypercube, the communicating processes are not directly linked in a mesh. 
Consequently, messages travel over multiple links and there is overlap among messages sharing 
the same links. Figure 13.7 shows the messages sent and received by processes 0 and 37 during 
an FFT computation on a 64-node mesh. As the figure shows, process 0 communicates with 
processes 1, 2, 4, 8, 16, and 32. Note that all these processes lie in the same row or column of the 
mesh as that of process 0. Processes 1, 2, and 4 lie in the same row as process 0 at distances of 
1, 2, and 4 links, respectively. Processes 8, 16, and 32 lie in the same column, again at distances 
of 1, 2, and 4 links. More precisely, in plog of the log p steps that require communication, the 

communicating processes are in the same row, and in the remaining plog steps, they are in the 
same column.  



Figure 13.7. Data communication during an FFT computation on a logical square mesh of 64 
processes. The figure shows all the processes with which the processes labeled 0 and 37 
exchange data. 

 

Since a process performs n/p such calculations in each of the nlog  iterations, the overall parallel 
run time is given by the following equation: 

 

The speedup and efficiency are given by the following equations: 

 

 

 



4.3 The transpose algorithm 

Another parallel algorithm involves matrix transposition, and hence is called the transpose 
algorithm. 

The transpose algorithm is particularly useful when the ratio of communication bandwidth to CPU 
speed is low and high efficiencies are desired. On a hypercube or a p-node network with Θ(p) 
bisection width, the transpose algorithm has a fixed asymptotic isoefficiency function of �(p2 log 
p). That is, the order of this isoefficiency function is independent of the ratio of the speed of point-
to-point communication and the computation. 

Two-dimentional transpose algorithm 

The simplest transpose algorithm requires a single transpose operation over a two-dimensional 
array; hence, we call this algorithm the two-dimensional transpose algorithm. 

Assume that n is a power of 2, and that the sequences of size n are arranged in a nn × two-
dimensional square array, as shown in the picture for n = 16. Recall that computing the FFT of a 
sequence of n points requires log n iterations. If the data are arranged as shown in Figure 13.8, 
then the FFT computation in each column can proceed independently for nlog iterations without 
any column requiring data from any other column. Similarly, in the remaining nlog iterations, 
computation proceeds independently in each row without any row requiring data from any other 
row. The figure illustrates that if data of size n are arranged in a nn ×  array, then an n-point 
FFT computation is equivalent to independent n -point FFT computations in the columns of the 
array, followed by independent n -point FFT computations in the rows. 

Figure 13.8. The pattern of combination of elements in a 16-point FFT when the data are arranged 
in a 4 x 4 two-dimensional square array. 

 

If the nn × -array of data is transposed after computing the n -point column FFTs, then the 
remaining part of the problem is to compute the n -point columnwise FFTs of the transposed 



matrix. The transpose algorithm uses this property to compute the FFT in parallel by using a 
columnwise striped partitioning to distribute the nn × -array of data among the processes. For 
instance, consider the computation of the 16-point FFT, where the 44× -array of data is distributed 
among four processes such that each process stores one column of the array. 

 In general, the two-dimensional transpose algorithm works in three phases.  

1) A n -point FFT is computed for each column of the initial array. 
2) The array of data is transposed.  
3) A n -point FFT is computed for each column of the transposed array. 

 Figure shows that the first and third phases of the algorithm do not require any interprocess 
communication. In both these phases, all n points for each columnwise FFT computation are 
available on the same process. Only the second phase requires communication for transposing 

nn × -the matrix. 

 

In this transpose algorithm, one column of the data array is assigned to one process. Before 
analyzing the transpose algorithm further, consider the more general case in which p processes 
are used and np ≤≤1 . The nn × -array of data is striped into blocks, and one block of 

p
n rows is assigned to each process. In the first and third phases of the algorithm, each process 

computes 
p
n FFTs of size n each. The second phase transposes the nn × -matrix, which is 

distributed among p processes with a one-dimensional partitioning. Such a transpose requires an 
all-to-all personalized communication. 



Now we derive an expression for the parallel run time of the two-dimensional transpose algorithm. 
The only inter-process interaction in this algorithm occurs when the nn × array of data 
partitioned along columns or rows and mapped onto p processes is transposed. The parallel run 
time of the transpose algorithm on a hypercube or any �(p) bisection width network is given by the 
following equation: 

p
NtptN

p
NtT wscp +−+= )1(log 2  

The expressions for speedup and efficiency are as follows: 
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Comparison with the Binary-Exchange Algorithm 

The transpose algorithm has a much higher overhead than the binary-exchange algorithm due to 
the message startup time ts, but has a lower overhead due to per word transfer time tw. As a result, 
either of the two algorithms may be faster depending on the relative values of ts and tw. If the 
latency ts is very low, then the transpose algorithm may be the algorithm of choice. On the other 
hand, the binary-exchange algorithm may perform better on a parallel computer with a high 
communication bandwidth but a significant startup time. 

The Generalized Transpose Algorithm 

In the two-dimensional transpose algorithm, the input of size n is arranged in a nn × two-
dimensional array that is partitioned along one dimension on p processes. These processes, 
irrespective of the underlying architecture of the parallel computer, can be regarded as arranged in 
a logical one-dimensional linear array. As an extension of this scheme, consider the n data points 
to be arranged in an n1/3 x n1/3 x n1/3 three-dimensional array mapped onto a logical pp × two-
dimensional mesh of processes. simplify the algorithm description, we label the three axes of the 
three-dimensional array of data as x, y, and z. In this mapping, the x-y plane of the array is 
checkerboarded into pp ×  parts. Thus, each process has  
elements of data. 



 

In this case, n1/3-point FFTs are computed over the elements of the columns of the array in all 
three dimensions, choosing one dimension at a time. We call this algorithm the three-dimensional 
transpose algorithm. This algorithm can be divided into the following five phases: 

1. In the first phase, n1/3-point FFTs are computed on all the rows along the z-axis. 
2. In the second phase, all the n1/3 cross-sections of size n1/3 x n1/3 along the y-z plane are 

transposed. 
3. In the third phase, n1/3-point FFTs are computed on all the rows of the modified array along 

the z-axis. 
4. In the fourth phase, each of the n1/3 x n1/3 cross-sections along the x-z plane is transposed. 
5. In the fifth and final phase, n1/3-point FFTs of all the rows along the z-axis are computed 

again. 

The communication (transposition) phases in the three-dimensional transpose algorithm 
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4.5 Comparison of described algorithms 

The binary-exchange algorithm and the two-dimensional transpose algorithms can be regarded as 
two extremes. The former minimizes the overhead due to ts but has the largest overhead due to tw. 
The latter minimizes the overhead due to tw but has the largest overhead due to ts . The variations 
of the transpose algorithm for 2 < q < log p lie between these two extremes. For a given parallel 
computer, the specific values of tc, ts , and tw determine which of these algorithms has the optimal 
parallel run time 

Note that, from a practical point of view, only the binary-exchange algorithm and the two- and 
three-dimensional transpose algorithms are feasible. Higher-dimensional transpose algorithms are 
very complicated to code. Moreover, restrictions on n and p limit their applicability.  

A comparison of the speedups obtained by the binary-exchange, 2-D transpose, and 3-D 
transpose algorithms on a 64-node hypercube with tc = 2, tw = 4, and ts = 25. 

 

The figure shows that for different ranges of n, a different algorithm provides the highest speedup 
for an n-point FFT. For the given values of the hardware parameters, the binary-exchange 
algorithm is best suited for very low granularity FFT computations, the 2-D transpose algorithm is 
best for very high granularity computations, and the 3-D transpose algorithm's speedup is the 
maximum for intermediate granularities. 

To sum up, the binary-exchange algorithm yields good performance on parallel computers with 
sufficiently high communication bandwidth with respect to the processing speed of the CPUs. 
Efficiencies below a certain threshold can be maintained while increasing the problem size at a 
moderate rate with an increasing number of processes. However, this threshold is very low if the 
communication bandwidth of the parallel computer is low compared to the speed of its processors. 

 


