L AR R AR RE R R R
IR RRRRRRRRRRRRER

ARARXEXXXX XL XXX AN

R ..u..%ﬂ...ﬁ/
p L AN
:
WNNY e aaaennee
\ QOO0
L XY)

J
.ﬁb
_ / : : 4.......‘.‘..".' /J4J4J414...
Vﬂ » Jppfﬂhdﬂﬂt) Y YYYYYYYYYYY
2800000000000 00 ﬂf//x/ﬂ/ﬂ//x/x‘,
..................) TYYYYY Y Y YY1y Yy
LA AR) Y Y Y Y Y Y Y Y Yy ey
222202 RRRRRRRERE
T313T1 1170
JJJJJJ.JJJ,cdc‘.....
JJJHJ.JJJJJJ,J
Y rYE Y Y Y YYY Y Yy
TYNYYYYYY NN Y
r bbb bhbE

PR RRR R R R bR

vennnahbhaRRRRRRRRE

-
oy
i

%
e

2R RRRRRE
J JJJJJ(I,-JAJ
paanaaRRRRRE
reeRanhhRb R

2o bbb R RRRE

JJJJJI..,.....
TY Y Y Y Y Yy Yy 0y
T31333131%3Y1YY

z;ﬂ'
oo

* s
%
s

“'
s

S
oSV

- _ v v
weey
%
Yo'
e

.
o
L
ped

soeoe
.
e
e

.
- ..
.

"
gs

w000 0022000090000 0000000»
C) e N A T X AN I T T TN
]) N N D
.) T T T A NS YT Y v
YT YT Y YIYYYYYYY PPN P MNP PS o
TTITITYTYYYY LA AR R AL B R

‘......-¢4,444JJ,J)
YT YYYYY
YT LYY YN YY)

Y T YT T Y T T T I YTYIYTYYYY YY
I
RARRR RN RN

Y YTYYIYIIYIYIYNTY
LYY YIYYY YT YY .
YN SS 444 44444 JJLJJ

ITITIYTYIY Y Vﬂ

¥
e

SRR A . fﬂ) TS
YT YY Y YYYYYY F_J :
YT I YTYIYYYNYIY Y JJJ
. ...4.4444JJ4J JJJJJJ
YT YY Y Y
RERRRRRR A S vy Y Yy YN JJJJJJJJJJJJJJJJJJJ
, »
p
1)

Y Y Y Y Y YYYYYYYYYS
Y Y Y Y Y YYYYYYYYYS
Y T Y Y Y Y EYOINOYTY

| OO0
JJJJJJAI

YYYYYY Y
Y Y Y Y YYYYYYYYYYY
JJJ,JJJJ:;«.-

What is GPGPU?

General-purpose computing on Graphics Processing
units

Applications traditionally: handled by the CPU

Programmable stages and: higher precision arithmetics
on:renderng:pipelines

Stream processing of non-graphics data

Why GPGPU can be effective’?

GPUs are bullt for parallel processing
Highly effective in data parallel tasks

High amount of computing units: GPUs have in the
range of 1238-800 ALUS (compared to 4 ALUs on a
typical guad-core)

High memory: bandwidth (100+ GB/s, compared to
~10-20 GB/s for CPUSs)

Computational power of GPU

Floating-point operations per:-second for-the:GPUana-CPU:

u
S
[N
o
—
L
o
i 4
o
LT
o

NVIDIA GPU
==|ntel CPL

NV35 NV40
NV30

3.2 GHz

3.0 GHz Harpertown
Core2 Duo &

-—0—9

*-o—o
Jan Jun Apr
2003 2004

Jun Mar Nov May Jun
2005 2006 2007 2008

GT200 = GeForce GTX 280
G92 = GeForce 9800 GTX
G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra

G70 = GeForce 7800 GTX NV30 = GeForce FX 5800

NV40 = GeForce 6800 Ultra

Application areas:

igh-performance computing
Signal processing
Image processing

Computer graphics:
= Raytracing

x Rendering tasks

High-performance computing on
GPGPU: Scientific applications

Molecular dynamics
Astrophysics
GeophysICS
Quantum chemistry
Neural networks

etc.

Speedup by GPU;

ENINEENENRRN NN NEENENEN
|
T 5 S o
; u

i
]
|

LU L]

€) N

L ——— T —————
Medical Imaging Molecular Dynamics Video Transcoding Matlab Computing Astrophysics
U of Utah U of lllinois, Urbana Elemental Tech AccelerEyes RIKEN

T —— O —
Financial simulation Linear Algebra 3D Ultrasound Quantum Chemistry Gene Sequencing

Oxford Universidad Jaime Techniscan U of lllinois, Urbana U of Maryland

GPGPU hardware:

= NVIDIA graphic processors:

x from desktop GPUs (9x or G X series) to dedicated
Tesla and Quadro

x AMD graphic processors
x AMD FireStream is a dedicated solution

x Cell by Sony, Toshiba and IBM

Specifics of GPU architecture

GPU devotes much more transistors 1o-dataprocessing
rather then data caching-and:flow:control

Control

Programming model.

Small program (called kernel) works on many data
elements

Each data element Is processed concurrently

Communication I1s effective only: inside one execution
unit

Different models:

x SIMD (Single instruction, multiple data)

x SPMD (Single program, multiple data)

GPGPU implementation:
NVIDIA CUDA

x (General purpose parallel computing architecture
x \Works with all-modern NVIDIA GPUSs

x Uses G as a high-level programming language

x Other languages will be
supported in the future

CUDA Architecture

Basic CUDA concepts:
KErnels

» G functions, called kernels, that are executed N times
N parallel with <<< >>> syntax in-main: function

__global void vecAdd(float* A, float* B, float* C)
{

int 1 = threadIdx.x;
C[i] = A[i] + B[1];

}

int main ()

{

// Kernel invocation
vecAdd<<<l, N>>> (A, B, C);

Basic CUDA concepts:
Thread Hierarchy

x One kernel i1s executed in-one thread, and threads are
combined In thread blocks

__global void matAdd(float A[N][N], float B[N] [N],
float C[N] [N])

{

threadIldx.x;

threadIdx.y;

int 1
int J

Cl1] (3] = Al1][3] + BI1][J];

main ()

// Kernel invocation
dim3 dimBlock (N, N);
matAdd<<<1l, dimBlock>>> (A, C);

Threads and thread blocks

Grid

Block (0, 0) = Block (1, 0) Block (2, 0)

» Threads within a block have S S SR

shared memory-and:can Block (0, 17| Block (3, 1) |"Block 2, 1)

synchronize §§§§§§ §§§§§§§ §§§§§§§

x On current GPUs, a thread

block may contain up-to
512 threads

g : / Block (1, 1) \‘ -
v A kernel Can be exeCUted Thread (O, 1) [Thread (1, 1) |Thread (2, 1) Thréad (3,1)
by multiple equally-shaped g g g §
thread blocks pUt N -a QI’/O’

Thread blocks and grio

grid

__global wvoild matAdd(float A[N] [N] float B[N] [N],

float C[N] [N])
{

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
1f (1 < N && j < N)

i

Clil(J] = A[1]1[3] + BI[1][3];

int main ()
{
// Kernel invocation
dim3 dimBlock (16, 16);
dim3 dimGrid ((N + dimBlock.x - 1) / dimBlock.x,
(N + dimBlock.y - 1) / dimBlock.y);
matAdd<<<dimGrid, dimBlock>>> (A, B, C);

Thread blocks grid

Basic CUDA concepts:
Viemory Hierarchy.

= \Vultiple memory spaces

x - Additional memory spaces:
constant and texture
Memory

= Different memory usage
strategies

® Memory usage: bottleneck
of GPGPU applications

Basic CUDA
concepits:
Host and Device

CUDA threads may execute on
a physically separate device
that operates as a coprocessor
to the host running the G
program

» Both the host and the device

maintain theirown DRAM,
referred to as host memory and
device memory, and: CUDA
runtime manages data transter.

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel

Kernell<<<>>>()

Device

Grid O

Block (0, 0) ' Block (1, 0) Block (2, 0)

Block (0, 1) Block (1,1) Block (2, 1)

Device

Grid 1

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

CUDA features

x Efficient implementation of FFT-on CUDA
x CUDA implementation of BLAS, called CUBLEAS
x Subset of BLAS functions
x CUDA-based plugins for MATIEAB
x| APACK libraries for CUDA are under development

x Efficient dense linear algebra, sparse solvers are under
development

CUDA limitations

x Fundamental advantages and limitations come from specific
architecture and data-parallel programming model

x Double precision has no-deviations from-IEEE 754 standard,
single precision is not standard

x Still lacks ‘advanced: profiler
x Emulation on CPU is slow and often gives different results

x \Works only on NVIDIA GPUs

Alternative implementation:
Brook

x Alternative architecture is built- by AMD;, called Stream
Computing, lbased on Brook language

x Brook works on both- AMD and NVIDIA GPUs, Brook+ is AMD
hardware optimized version

x [aster in some applications; better support of double precision

x Apparently, AMD doesn’t actively compete to NVIDIA in high-
performance GPGPU market at the moment

Future directions; L arrapee

x | arrabee - Intel’s upcoming discrete GPU

x Compete with both GPUs and high-performance
computing

® Hyprid architecture: 16-32 simple X386 cores with
SIMD vector units and per-core L1/L.2 cache

x No fixed function hardware, except for texturing units

L arrabee: Programming concepts

x [ask-parallel on core level
x Data-parallel on vector units inside the core
x Gores can submit work to itself- without the host

x Benefits from Intel G/C++ compiler

Muchipraise-from:intel:and much criticism from GPU
manutacturers

hirvana

software
. Improvements ’)
GPUs :

Larrabee

@
!
=
©
£
S

=
@

Q.

x86 .

Programmability High

Future directions: OpenCL

x OpenCL - a framework for programming on CPUSs,
GPUs and other processors

x Proposed by Apple and developed by
KAroNos: Grotip

x Full support from both AMD and NVIDIA
x Will be introduced with Mac OS X 10.6

Conclusion

GPGPU Is a developed branch of computing

NVIDIA CUDA already allows us to utilize the power of
GPUs In convenient way

Data parallel programming model is effective in- many
applications, but GPGRPU could become more flexible

A fusion between many-core CPUs and GPUs is a
promising direction

Standardized API for GPGPU is highly anticipated

