Joined Advanced Student School (JASS) 2009
March 29 - April 7,2009
St. Petersburg, Russia

GPGPU: HIGH-PERFORMANCE COMPUTING

Dmitry Puzyrev

St. Petersburg State University

Faculty of Physics

Department of Computational Physics

In recent years the application of graphics processing units to general purpose computing becomes
widely developed. GPGPU, which stands for General-purpose computing on Graphics Processing Units,
makes its way into the fields of computations, traditionally associated with and handled on CPUs or clusters
of CPUs.The breakthrough in the area of GPU computing was caused by the introduction of programmable
stages and higher precision arithmetics on rendering pipelines, allowing to perform stream processing of
non-graphics data.

Let's understand, what makes GPUs effective in high-performance computing. GPUs are built for
parallel processing of data, and are highly effective in data parallel tasks. High amount of computing
units (GPUs have in the range of 128-800 ALUs, compared to 4 ALUs on a typical quad-core) allows
computation power of GPU to exceed that of CPU by up to |0 times for high-end models, while
high-end GPUs cost much less than CPUs (see Fig.). Memory bandwidth, essential to many
applications, is 100+ GB/s, compared to = 10-20 GB/s for CPUs.

GT200
1000
MVIDIA GPU
—#—I|ntel CPU G80 G92
o Ultra
E G80
8]
i 500
G}
x G71
L]
o
G70
2R0 NV40 3.2 GHz
NV35 3.0 GHz Harpertown
NV30 ‘__._ﬁ]_)ﬁ/‘.
o @@ e
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
G80 = GeForce 8800 GTX NV40 = GeForce 6800 Ultra

Fig. I. Comparison of computational power:
floating-point operations per second for the GPU and CPU (by NVIDIA)

GPGPU: High-performance Computing Puzyrev 2

Such computational power can now be applied in different areas, including scientific computing,
signal and image processing, and, of course, computer graphics itself (including non-traditional
rendering algorithms, e.g. ray tracing). Scientific applications of high-performance GPGPU include
molecular dynamics, astrophysics, geophysics, quantum chemistry, neural networks. Fig. 2 illustrates the
effectiveness (speedup) of GPGPU in several fields.

"

Medical Imaging Molecular Dynamics Video Transcoding Matlab Computing Astrophysics
U of Utah U of lllinois, Urbana Elemental Tech AccelerEyes RIKEN

47X 30X

inancial simulation Linear Algebra 3D Ultrasound Quantum Chemistry Gene Sequencing
(0)'{{] (] Universidad Jaime Techniscan U of lllinois, Urbana U of Maryland

Fig. 2. Speedup by use of GPGPU in scientific applications (by NVIDIA)

GPGPU computing can be performed on various hardware, including virtually all modern GPUrs.
NVIDIA desktop GPUs (9x or GTX series) and modern AMD GPUs support general-purpose
computing. Both NVIDIA and AMD have their own dedicated high-performance GPGPU solutions,
which are NVIDIA Tesla and AMD FireStream.

Of course, GPU architecture is highly specific. Basically, GPU devotes much more transistors to
data processing rather than data caching and flow control. Fig. 3 roughly illustrates the CPU and GPU
architecture specifics.

Hardware specifics affect the programming model. The basics of GPGPU programming model
are:

*Small program (called kernel) works on many data elements
*Each data element is processed concurrently
*Communication is effective only inside one execution unit.

Two slightly different models are used on GPUs: SIMD (Single instruction, multiple data) and
SPMD (Single program, multiple data).

GPGPU: High-performance Computing Puzyrev 3

Control

Fig. 3. Schematic comparison of CPU and GPU architecture

The most popular instrument of general-purpose GPU computing is NVIDIA's GPGPU
implementation, that is called NVIDIA CUDA. CUDA is positioned as general purpose parallel
computing architecture and works with all modern NVIDIA GPUs. It uses C as high-level
programming language, though other languages will be supported in the future, as seen on Fig. 4.

C OpenCL | Fortran C++ DX11
Compute

Fig. 4. NVIDIA CUDA architecture

One of the basics for CUDA is the concept of kernels. These are C functions, that are executed N
times in parallel with specific <<<>>> syntax in main functions. Fig. 5 contains the basic example of
CUDA code with kernel and main function.

GPGPU: High-performance Computing Puzyrev 4

__global void vecAdd(float* A, float* B, float* C)
{

int 1 threadIdx.x;
= A[1i] + B[1i];

}

int main ()

{
// Kernel invocation
vecAdd<<<l, N>>>(A, B, C):;

Fig. 5. Kernel: this code adds two vectors A and B of size N

The next basic concept of CUDA s thread hierarchy. One kernel is executed in one thread, and
threads are combined in thread blocks. Next figure shows an example of matrix addition using thread
blocks.

__global void matAdd(float A[N] [N] float B[N] [N],

float C[N][N])
{
int i = threadIdx.x;
int j threadIdx.y;
Cl[i1[3J] = A[Li]1[J] + BIli1[31;

main ()

// Kernel invocation
dim3 dimBlock (N, N);
matAdd<<<l, dimBlock>>>(A, B, C);

Fig. 6. Thread blocks: this code adds two matrices A and B of size N*N

Threads within a block have shared memory and can synchronize. On current GPUs, a thread
block may contain up to 512 threads. A kernel can be executed by multiple equally shaped thread
blocks put in a grid. Thread blocks in a grid are required to execute independently. Fig. 7 shows an

GPGPU: High-performance Computing

Puzyrev 5

example of matrix addition on a grid. Fig. 8 shows the full hierarchy of threads.

__global void matAdd(float A[N] [N]
float C[N] [N]

{

float B[N] [N],

= blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

N && j < N)
Cli]([3] = A[i][J] + B[i][3J1;

main ()

// Kernel invocation
dim3 dimBlock (16, 106);

dim3 dimGrid ((N + dimBlock.x - 1)
(N + dimBlock.y - 1)

/ dimBlock.x,
/ dimBlock.y) ;

matAdd<<<dimGrid, dimBlock>>> (A, B, C);

Fig. 7. Grid: this code adds two matrices A and B of size N*N

Grid

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1Y

Block (1, 1)

‘Block (2, 1)

Block (1, 1)

Fig. 8. Full thread hierarchy

GPGPU: High-performance Computing Puzyrev 6

Memory hierarchy is another complicated part of CUDA. As shown on Fig. 9, multiple memory
spaces are present, including additional specialized memory spaces: constant and texture memory.
Different memory usage strategies are used for different applications. Memory usage is usually the
bottleneck of GPGPU applications.

Thread

P . Per-thread local
D g memory

Thread Block

R

Per-block shared
memory

AAAA
\AAAL

Grid 0
Block (0, 0) @ Block (1, 0) | Block (2, 0)
Block (0, 1) | Block (1,1) | Block(2,1) -
Grid 1
Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
1
Block (0, 2) Block (1, 2)

Fig. 9. Memory hierarchy

The host and device model controls the execution of CUDA program. CUDA threads are
executed execute on a physically separate device that operates as a coprocessor to the host running
the C program. Both the host and the device maintain their own DRAM, referred to as host memory
and device memory, and CUDA runtime manages data transfer.

GPGPU: High-performance Computing Puzyrev 7

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel

Kernell<<<>>>()

Fig. 10. Host and device: CUDA program execution

GPGPU: High-performance Computing Puzyrev 8

CUDA allows to implement various libraries of functions, that essential for scientific high-
performance computing. There is an efficient implementation of FFT on CUDA, as well as an
implementation of BLAS, called CUBLAS. Unfortunately, CUBLAS doesn't yet include all BLAS
functions. CUDA-based plugins for MATLAB exists. LAPACK libraries for CUDA are under
development. CUDA allows to perform efficient operations on dense matrices, sparse solvers are still
under development.

CUDA still has many limitations. Of course, some of them are fundamental and come from
specific architecture and data-parallel programming model. But other limitations should definitely be
fixed in the future. For example, double precision has no deviations from |EEE 754 standard, but single
precision is not standard. Double precision is supported only by the last generation of NVIDIA GPUs.
CUDA still lacks advanced profiler. Emulation on CPU is slow and often results, which are different
from that on GPU. Another drawback is that CUDA works only on NVIDIA GPUs.

Alternative implementation of GPGPU architecture is Stream Computing by AMD, which is based
on Brook programming language. Brook works on both AMD and NVIDIA GPUs, Brook+ is AMD
hardware optimized version. Brook is faster in some applications and has better support of double
precision.

There are two main future directions in GPGPU computing. The first focuses on creation of new
hardware, which should be more suitable for general-purpose computing. The best example is
Larrabee - Intel's upcoming discrete GPU. It will compete with both GPUs and high-performance
computing. Larrabee has a hybrid architecture: 16-32 simple x86 cores with SIMD vector units and
per-core LI/L2 cache, without fixed function hardware, except for texturing units.

Programming model for Larrabee will be task-parallel on core level and data-parallel on vector
units inside the core. One significant feature is that Larrabee cores can submit work to itself without
the host. Larrabee will use Intel C/C++ compiler and benefit from all its features. Larrabee gathers
much praise from Intel and huge criticism from GPU manufacturers.

Another direction is to create a standardized API for programming on different architectures.
OpenCL, which stands for Open Computing Language, is a framework for programming on CPUs,
GPUs and other processors. It was proposed by Apple and developed by Khronos Group, and has full
support from both AMD and NVIDIA. OpenCL is likely to be introduced with Mac OS X 10.6.

For the conclusion, let’s make a statement: GPGPU is a developed branch of computing. NVIDIA CUDA
already allows us to utilize the power of GPUs in convenient way.

Data parallel programming model is effective in many applications, but GPGPU could become more
flexible, supporting more programming languages and programming concepts.

A fusion between many-core CPUs and GPUs is a promising direction, and this direction is explored by
Intel.

Standardized API for GPGPU is highly anticipated, and upcoming OpenCL is the main candidate for
this API.

GPGPU: High-performance Computing Puzyrev 9

REFERENCES

NVIDIA CUDA Programming Guide 2.1
Various NVIDIA CUDA presentations

