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Basics

*Linear system of equations

Ax=Db
*A Hermitian matrix (or self-adjoint matrix) is a square matrix
with complex entries which is equal to its own conjugate transpose, 3 24
that 1s, the element in the ith row and jth column 1s equal to the _ +i
complex conjugate of the element in the jth row and ith column, for g 1

all indices i and j

* Symmetric it a; = a;
* Positive definite if, for every nonzero vector x

XTAx >0

o Quadl’athfOI"m.' f(X) — ;XTAX — b:rXa'F C _

S {
* Gradient of Quadratic form: 28! ) 1 1

f= i |= ATx+ Ax-b
% 2 2
—f(x)
0X 4,
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Various quadratic forms

Positive-definite Negative-definite

matrix matrix
Singular Indefinite
positive-indefinite matrix
matrix
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Various quadratic forms

e

Ist April

JASS 2009



Eigenvalues and Eigenvectors

For any nxn matrix A, a scalar A and a nonzero vector v that
satisfy the equation

Av=AV

are said to be the eigenvalue and the eigenvector of A.

[f the matrix 1s symmetric, then the following properties hold:

(a) the eigenvalues of A are real

(b) eigenvectors associated with distinct eigenvalues are
orthogonal

*The matrix A 1s positive definite (or positive semidefinite) if and

only 1f all eigenvalues of A are positive (or nonnegative).
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Eigenvalues and Eigenvectors

Why should we care about the eigenvalues? lterative methods
often depend on applying A to a vector over and over again:

#
3 L]
By B

(a) If |A|<1, then Alv=A'v vanishes as 1 approaches infinity

[

v Bv B-v 33 v

(b) If |A|>1, then Alv=Alv will grow to infinity.
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Some more terms:

Spectral radius of a matrix 1s: p(A)= max|A |

Condition number 1s: K= i‘\max

min

X

exact  ““app

Error:e=x

Residual: r = b-A.x,
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Preconditioning

Preconditioning is a technique for improving the condition number
of a matrix. Suppose that M is a symmetric, positive-definite matrix
that approximates A, but is easier to invert. We can solve AX =b
indirectly by solving

M'Ax = M'b

1I'ype of preconditioners:
*Perfect preconditioner M = A

Condition number =1 —»solution in one iteration

but Mx=b is not useful preconditioner
eDiagonal preconditioner, trivial to invert but mediocre
sIncomplete Cholesky: A —»LL’

* Not always stable
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Stationary and non-stationary methods

Stationary methods for Ax = b:
X D=Rx®+ ¢
neither R or ¢ depend upon the iteration counter k.

Splitting of A
A = M - K with nonsingular M
Ax=Mx -Kx = b
x = M'Kx - M'b=Rx +c
Examples:

 Jacobi method
 Gauss-Seidel
» Successive Overrelaxation (SOR)
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Jacobi Method

*Splitting for Jacobi Method, M=D and K=L +U
X V= DI((L+Ux"+ b)

solve for x from equation /, assuming other entries fixed

fori=1ton

forj=1ton
u (k+1)= (u

i) i-1,]

(k) (k) (k) (k)
+ Uise, + Ui + Ui )14
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‘ Gauss-Siedel Method and
SOR(Successive-Over-Relaxation)

Splitting for Jacob1 Method, M=D-L and K=U
XD = (D- L)'I( U x®+ b)
While looping over the equations, use the most recent values X

fori=1ton

forj=1ton

u K= (y K+ 4y (K 4y (kD 4 gy
i) i-1,] i+1,] i,j-1

(K))/4

ij+1

Splitting for SOR:
X® V= cox ®V + (1-0) x ©

OR

x* = (D-wLY (wU+ (1-w) D) x*+ o (D-wL) ! b
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Stationary and non-stationary methods

*Non-stationary methods:

* The constant are computed by taking inner products of
residual or other vectors arising from the iterative
method

 Examples:

e Conjugate gradient (CG)

 Minimum Residual (MINRES)

» Generalized Minimal Residual (GMRES)
e BiConjugate Gradient (BiCG)

* Quasi Minimal Residual (QMR)

« Conjugate Gradient Squared (CGS)
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Descent Algorithms

Fundamental underlying structure for almost all the descent
algorithms:

e Start with an 1nitial point
e Determine according to a fixed rule a direction of movement

e Move 1n that direction to a relative minimum of the objective
function

e At the new point, a new direction 1s determined and the
process 1s repeated.

e The difference between different algorithms depends upon the
rule by which successive directions of movement are selected
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The Method of Steepest Descent

* In the method of steepest descent, one starts with an arbitrary point
X, and takes a series of steps X, X, ... until we are satisfied that

we are close enough to the solution.

* When taking the step, one chooses the direction in which
decreases most quickly, 1.e.

e Definitions: — f’(X(i)) =b - AX(i)
error vector: €;=X;-X
residual: r;,=b-Ax
 From Ax=b, 1t follows that
ro=-Ae; =1 (X)

Residual 1s direction of Steepest Descent
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The Method of Steepest Descent

Starting at Find the

(-2,-2) take (a) il point of
steps in =—= intersection
direction of of these
steepest “'surfaces that
descent of { minimizes

The gradient
of the
The parabola bottomost
1s the point 1s
intersection of orthogonal to
surfaces gradient of

previous step
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The Method of Steepest Descent
* The algorithm

ri) =b—Ax
T \ Two matrix-vector
Lo

multiplications are

Oy =
W= T Arg / required.

(1)
Xi+) = X)) T OO = €41) =€) T Uik

* To avoid one matrix-vector multiplication, one uses
Fi+1) = X(i) ~ Oy ATy

The disadvantage of using this recurrence 1s that the residual sequence 1s
determined without any feedback from the value of x;, so that round-off

€ITOTS may cause X to converge to some point near X.
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Steepest Descent Problem

@ A

*The gradient at the minimum of a line search 1s orthogonal to the

direction of that search = the steepest descent algorithm tends to
make right angle turns, taking many steps down a long narrow
potential well. Too many steps to get to a simple minimum.
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The Method of Conjugate Directions

Basic 1dea:  Mathematical formulation:
* Pick a set of orthogonal 1. For each step we choose a
ilearch directions d(o), d(l), e point

(n-1)

 Take exactly one step in each
search direction to line up with 2 To find o i), We use the fact
X that e, ,, is orthogonal to d,

e Solution will be reached 1n n
steps

Xy Xpta g dg,

Ist April JASS 2009 20



The Method of Conjugate Directions

* To solve the problem of not knowing e, one makes the search
directions to be A-orthogonal rather then orthogonal to each other,

1.e. T
diAdg =0

(a) | (b)
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The Method of Conjugate Directions
* The new requirement is now that e, , 1s A-orthogonal to d;

dc(le(x(m)) = ' (X(i11) dX;ZD =

risndg) =0

diyAei) =0

df)Aleg) +oydg))=0
d X

0Ly = N

T
d (i) Ad)

0

If the search vectors were the residuals, this
formula would be identical to the method of
steepest descent.
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The Method of Conjugate Directions

Calculation of the A-orthogonal search directions by a conjugate
Gram-Schmidt process

1. Take a set of linearly independent vectors u, u,, ..., u_,
2. Assume that d ,=u,

3. For 1>0, take an u, and subtracts all the components from it
that are not A-orthogonal to the previous search directions

: T
S umAdg
C—u. d. . N )
diy =ua + 2 Bydgy » Py== 1~
=0 OAE0)
‘w %) o,
...... u+
P R
] ;} ,“" d(l)
Y |~
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The Method of Conjugate Directions

* The method of Conjugate Gradients is simply the method of
conjugate directions where the search directions are constructed by
conjugation of the residuals, 1.e. u=r

* This allows us to simplify the calculation of the new search
direction because

-

T T
I oo _ oo L
Bij =1 di_yAd_y, 1l I
1 (-1 Aa_nAadg-n  Ia-nriE-n
0 1>]+1

* The new search direction 1s determined as a linear combination of
the previous search direction and the new residual

diitp) =i +Bidg)
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The Method of Conjugate Directions

X,= 0, r,=b, d,=r1,
for k =1,2,3,...
a, = (r' 1.,)/(d" Ad, ) steplength

X, = X, Tad_ approx solution

r, = I,.,— 0o Ad_ residual
Bk — (errk) / (er-lrk-l) imprOvement
dk = I, T ﬁk dk_1 search direction

* One matrix-vector multiplication per iteration

* Two vector dot products per iteration
* Four n-vectors of working storage

25
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Krylov subspace
Krylov subspace Kj is the linear combinations of b, Ab,..., A/ 'b.

Krylov matrix Kj =[b Ab A2b ... Ai=1b].

Methods to construct a basis for Kj ;
Arnoldi's method and Lanczos method

Approaches to choosing a good X In Kj :

« Ritz-Galerkin approach:. rj=b -,4)(], is orthogonal to Kj
(Conjugate Gradient)

« Minimum Residual approach r has minimum norm for X in Kj
(GMRES and MINRES)

« Petrov-Galerkin approach: r is orthogonal to a different
space KJ.(AT) (Biconjugate Gradient)
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Arnoldi’s Method

The best basis q-s9, for the Krylov subspace K. Is orthonormal.
Each new q, comes from orthogonalizing t = qu_ , to the basis vectors
-9, that are already chosen. The iteration to compute these
orthonormal g’s is Arnoldi’s method.

q,=b/|ibl
forj=1,...n_1
t=A%
fori=1,..,J
hij= qTI,
t=t- hl_qu_
end;
h,., = It
qj+1 =t/ h/+1,/
end
AQ =Q H
n-1 n nn-1

Ist April

% Normalize b to ||q || = 1
% Start computation of q.,
% one matrix multiplication
% tis in the space K,-+1

% hiqui =projection of t on q.
% Subtract that projection
% t is orthogonal to q PR
% Compute the length of t
% Normalize t to ||qj+1||=1
%q ,... q_are orthnormal

Hn N 1is upper Hessenberg matrix

JASS 2009
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[Lanczos Method

Lanczos method is specialized Arnoldi iteration, i1f 4 1s

symmetric (real)
Hn-1,n-1 = C27-n-1A Qn-1

H is tridiagonal and this means that in the orthogonalization process, each

n-1,n-1
new vector has to be orthogonalized with respect to the previous two vectors
only,since the inner products vanish.

5 =0, q,=0, b= arbitrary, q =b/||b||
fori=1,...,n_1
v=A%
g=q'v
V= v—B1qi_1 -aq

j-
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Minimum Residual Methods

Problem: If A is not symmetric positive definite,
CG is not guaranteed to solve Ax=b.

Solution: Minimum Residual Methods.
Choose xjin the Krylov subspace Kj so that ||b - ij|| is minimal

The first orthonormal vectors q1,...,qj go in the columns Qj SO QjTQj= /
Setting X = Qj y
I 7 lI=11b- Ax]l = [Ib— AQyll = lIb- Q, H, i

Using first j columns of Arnoldi's formula AQ = QH

) hll hlj i
C his
First j columns of QH = [Q1 Q;jﬂ}
hjj
; Nisij |
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Minimum Residual Methods

The problem becomes:
Choose y to minimize

= T —
IrlI=11Q", b-H, i
This is least squares problem.
Using zeros in H and Q‘j+1b to find a fast algorithm that computes y.

GMRES (Generalised Minimal Residual Approach)
A is not symmetric and the upper triangular part of H can be full.
All previously computed vectors have to be stored.

MINRES:(Minimal Residual Approach)
A is symmetric (likely indefinite) and H is tridiagonal.
Avoids storageof all basis vectors for the Krylov subspace

Aim: to clear out the non-zero diagonal below the main diagonal of H.

This is done by Givens rotations
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GMRES

Algorithm: GMRES
q,=b/|[b|

forj=1,2, 3...
step J of Arnoldi iteration
Find y to minimize || rli=1Q7, b-H, vl

jl!’!]

Full-GMRES :
The upper triangle in H can be full and step j becomes expensive and possibly
it is inaccurate as j increases.

GMRES(m):
Restarts the GMRES algorithm every m steps However tricky to choose m.
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Petrov-Galerkin approach

+ r.is orthogonal to a different space Kj(AT)

* BICG (Bi-Conjugate Gradient)
* QMR (Quasi Minimum Residual)
* CGS (Conjugate Gradient Squared)
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Lanczos Bi1-Orthogonalization Procedure

Choose two vectors vy, w; such that (v, w;) = 1
*Extension of the symmetric

Lanczos algorithm SetB) =0, =0, wy=vy =0

Forj —1,2,...,m Do:
*Builds a pair of bi-orthogonal

bases for the two subspaces a; = (Avj, w;)
T

Km(A’ V1) and Km(A ’W1) ’i}j+1 o A’UJ — U — ﬁj’l)j_1

Wi = Alwj — ajw; — djwjg

(fﬁj+1, 'lffj+1)l1/2. If53+1 " 9 StOp

0j11 =
/9j+1 — (ﬁj+1s'lf’j+1)/5j+1
Wy~ "f’jﬂ/ﬁjﬂ

Vit1 = Bjy1/0j41
EndDo
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B1-Conjugate Gradient (BiCG)
Compute r, := b — Axy. Choose r; such that (rg,r}) # 0
Set, py := 1y, p)) =7,
For; — 0,1, ..., until convergence Do:,
aj = (rj,77)/(Apj, P})

Tjtl = Ty + OGP;

rjy1 1= T — «; Ap;
* —— o ® AT %
T T o; A 2

Bi = (rjr, i 1) /(T 7])

Pi+1 = Pjv1 + Bip;

Pji1i= T+ O0;P;
EndDo
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Quasi Minimum Residual (QMR)

*QMR uses unsymmetric Lanczos algorithm to generate a basis for the Krylov

subspaces
*The lookahead technique avoids breakdowns during Lanczos process and makes

QMR robust.
Computery = b — Ax, and vy, 1= ||roll2, 11 i = v 1= 7o/ ™
Form = 1,2,..., untif convergence Do:
Compute o, 8,1 @and v, 1. w,,1; @s in Lanczos Aigor.
Update the QR factorization of T}, i.e.,
Apply (¥, i = m — 2, m — 1 to the m-th column of T,
Compute the rotation coefficients c,,, sm
Apply rotation 2,,,, to T,,, and g,,,, i.e., compute:
Y+l t= = SmYms Ym = CmYm; @ o, 1= 0y + S Sma
P = (irm -yl t.;_.mpz-) /timm
Em = Em—1 + YmPm
Iif |~vm+1| Is small enough Stop
EndbDo
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Conjugate Gradient Squared (CGS)

Compute ry := b — Ax; r; arbitrary.
Set pg = ug = rp.
For; — 0,1,2..., until convergence Do:

aj = (rj,75)/(Apj, 75)

qj = uj — xjAp;

w1 = x5 + o(u; + q;)

riv1 = 1 — G A(Y; + ;)

B = (rj+1,75)/(rss 75)

Ujr1 = Tit1 + 554;

Pi+1 = i1+ B5(q; + Bp;)
EndDo
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Summary

eStationary Iterative Solvers :

» Jacobi, Gauss-Seidel, SOR
*Non-Stationary Solvers:
* Krylov subspace methods

* Conjugate Gradient
« Symmetric postive definite systems

« GMRES and MINRES
 Non-symmetric matrices, but expensive
e Bi-CG
* Non-symmetric, two matrix-vector product
« QMR
* Non-symmetric, avoids irregular convergence of BiCG

e CGS
* Non-symmetric, faster than BICG, does not require transpose

Ist April JASS 2009

37



References

*An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain Jonathan Richard Shewchuk August 4, 1994

*Closer to the solution; Iterative linear solvers — Gene h. Golub
Henk A. Van der Vorst
*Krylov subspaces and Conjugate Gradient- Gilbert Strang

Ist April JASS 2009 38



Thank You !
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