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Outline

●Basics:

� Matrices and their properties

� Eigenvalues, Condition Number

●Iterative Methods

� Direct and Indirect Methods

●Krylov Subspace Methods

� Ritz Galerkin: CG

� Minimum Residual Approach : GMRES/MINRES

� Petrov-Gaelerkin Method: BiCG, QMR, CGS
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Basics

●Linear system of equations 

Ax = b
●A Hermitian matrix (or self-adjoint matrix) is a square matrix 
with complex entries which is equal to its own conjugate transpose, 

that is, the element in the ith row and jth column is equal to the 
complex conjugate of the element in the jth row and ith column, for 
all indices i and j

• Symmetric if aij = aji

• Positive definite if, for every nonzero vector x
XTAx > 0

• Quadratic form: 

• Gradient of Quadratic form:
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Various quadratic forms
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Various quadratic forms
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Eigenvalues and Eigenvectors

For any n×n matrix A, a scalar λ and a nonzero vector v that 
satisfy the equation

Av=λv
are said to be the eigenvalue and the eigenvector of A.
●If the matrix is symmetric, then the following properties hold:

(a)  the eigenvalues of A are real
(b)  eigenvectors associated with distinct eigenvalues are
       orthogonal
●The matrix A is positive definite (or positive semidefinite) if and 

only if all eigenvalues of A are positive (or nonnegative).
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Eigenvalues and Eigenvectors

Why should we care about the eigenvalues? Iterative methods 
often depend on applying A to a vector over and over again:

(a) If |λ|<1, then Aiv=λiv vanishes as i approaches infinity

(b) If |λ|>1, then Aiv=λiv will grow to infinity.
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Some more terms:

Spectral radius of a matrix is:  ρ(A)= max|λi|

Condition number is : 

Error: e = xexact – xapp

Residual: r = b-A.xapp

K=
max

min
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Preconditioning
Preconditioning is a technique for improving the condition number 
of a matrix. Suppose that M is a symmetric, positive-definite matrix 

that approximates A, but is easier to invert. We can solve Ax = b 
indirectly by solving

                                  M-1Ax = M-1b

1

Type of preconditioners:
●Perfect preconditioner M = A

Condition number =1  solution in one iteration

but Mx=b is not useful preconditioner
●Diagonal preconditioner, trivial to invert but mediocre 
●Incomplete Cholesky: A    LLT

● Not always stable
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Stationary and non-stationary methods

Stationary methods for Ax = b:
 x(k+1)=Rx(k)+ c 

neither R  or c depend upon the iteration counter  k.

●Splitting of A 
 A = M - K with nonsingular M
Ax= Mx -Kx = b 

  x = M-1Kx – M-1b = Rx +c 
Examples:

● Jacobi method

● Gauss-Seidel

● Successive Overrelaxation (SOR)
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Jacobi Method 

●Splitting for Jacobi Method, M=D  and K=L +U

 x(k+1)= D-1((L+U)x(k)+ b) 

solve for x
i 
from equation i, assuming other entries fixed

for i = 1 to n
    for j = 1 to n
      u

i,j

(k+1) = (u
i-1,j

(k)  +  u
i+1,j

(k)  +  u
i,j-1

(k)  +  u
i,j+1

(k))/4
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 Gauss-Siedel Method and
 SOR(Successive-Over-Relaxation)

Splitting for Jacobi Method, M=D-L  and K=U

 x(k+1)= (D-L)-1(U x(k)+ b) 
While looping over the equations, use the most recent values x

i

for i = 1 to n
    for j = 1 to n
      u

i,j

(k+1) = (u
i-1,j

(k+1)  + u
i+1,j

(k)  + u
i,j-1

(k+1)  +  u
i,j+1

(k))/4

Splitting for SOR: 

 x(k+1)= ωx
i

(k+1) + (1-ω) x
i

(k)

OR 
 x(k+1)= (D-ωL)-1(ωU + (1-ω) D) x(k)+ ω (D-ωL)-1 b
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Stationary and non-stationary methods

●Non-stationary methods:

● The constant are computed by taking inner products of 
residual or other vectors arising from the iterative 
method

● Examples:

● Conjugate gradient (CG)

● Minimum Residual (MINRES)

● Generalized Minimal Residual (GMRES)

● BiConjugate Gradient (BiCG)

● Quasi Minimal Residual (QMR)

● Conjugate Gradient Squared (CGS)
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Descent Algorithms

Fundamental underlying structure for almost all the descent 
algorithms: 

● Start with an initial point

● Determine according to a fixed rule a direction of movement

● Move in that direction to a relative minimum of the objective 
function

● At the new point, a new direction is determined and the 
process is repeated. 

● The difference between different algorithms depends upon the 
rule by which successive directions of movement are selected
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The Method of Steepest Descent

• In the method of steepest descent, one starts with an arbitrary point 
x(0) and takes a series of steps x(1), x(2), … until we are satisfied that 

we are close enough to the solution.

• When taking the step, one chooses the direction in which f 
decreases most quickly, i.e.

• Definitions:

error vector: e(i)=x(i)-x

residual: r(i)=b-Ax(i)

• From Ax=b, it follows that

r(i)=-Ae(i)=-f’(x(i))

 Residual is direction of Steepest Descent

(i)(i))(f Axbx −−−−====−−−− '
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Starting at
 (-2,-2) take 

steps in 
direction of 
steepest 
descent of f

The parabola 
is the 
intersection of 
surfaces 

Find the 
point of 
intersection 
of these 
surfaces that 
minimizes f

The gradient 
of the 
bottomost 
point is 
orthogonal to 
gradient of 
previous step

The Method of Steepest Descent
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The Method of Steepest Descent
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• The algorithm

• To avoid one matrix-vector multiplication, one uses

(i)(i)(i))1(i(i)(i)(i))1(i

(i)

(i)

(i)

(i)(i)

(i)

(i)

ree      rxx

Arr

rr

Axbr

T

T

α+==>α+=

=α

−=

++

(i)(i)(i))1(i Arrr α−=+

Two matrix-vector

multiplications are

required.

The disadvantage of using this recurrence is that the residual sequence is
 determined without any feedback from the value of x(i), so that round-off

errors may cause x(i) to converge to some point near x.

The Method of Steepest Descent
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Steepest Descent Problem

●The gradient at the minimum of a line search is orthogonal to the 

direction of that search ⇒ the steepest descent algorithm tends to 
make right angle turns, taking many steps down a long narrow 
potential well.  Too many steps to get to a simple minimum.
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• Mathematical formulation:

    1. For each step we choose a 
point 

x(i+1)=x(i)+α (i) d(i)

    2. To find α (i), we use the fact 

that e(i+1) is orthogonal to d(i)

Basic idea:

•   Pick a set of orthogonal   
search directions d(0), d(1), … , 
d(n-1)

•   Take exactly one step in each 
search direction to line up with 
x

• Solution will be reached in n 
steps

 The Method of Conjugate Directions 
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• To solve the problem of not knowing e(i), one makes the search 
directions to be A-orthogonal rather then orthogonal to each other, 
i.e.:

0A )j(
T

)i( =dd

 The Method of Conjugate Directions 
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• The new requirement is now that e(i+1) is A-orthogonal to d(i)
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If the search vectors were the residuals, this

formula would be identical to the method of

steepest descent.

 The Method of Conjugate Directions 
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• Calculation of the A-orthogonal search directions by a conjugate 
Gram-Schmidt process

    1. Take a set of linearly independent vectors u0, u1, … , un-1

    2. Assume that d(0)=u0

    3. For i>0, take an ui and subtracts all the components from it
        that are not A-orthogonal to the previous search directions

)j(
T
(j)

)j(
T
(i)

ij)j(

1i

0j
ij)i()i( ,

Add

Adu
     dud −=β∑ β+=

−

=

 The Method of Conjugate Directions 
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• The method of Conjugate Gradients is simply the method of 
conjugate directions where the search directions are constructed by 
conjugation of the residuals, i.e. ui=r(i)

• This allows us to simplify the calculation of the new search 
direction because

• The new search direction is determined as a linear combination of 
the previous search direction and the new residual
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 The Method of Conjugate Directions 



1st April JASS 2009 25

• One matrix-vector multiplication per iteration

• Two vector dot products per iteration

• Four n-vectors of working storage

x0 =  0,    r0 =  b,    d0 =  r0

for  k  =  1, 2, 3, . . .

αk =  (rT
k-1rk-1) / (d

T
k-1Adk-1)  step length

xk  =  xk-1 + αk dk-1                             approx solution

 rk =  rk-1 – αk Adk-1                           residual

βk =  (rT
k rk) / (r

T
k-1rk-1)          improvement

dk  =  rk + βk dk-1                                 search direction

 The Method of Conjugate Directions 
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Krylov subspace
Krylov subspace К

j
 is the linear combinations of b, Ab,...,A j−1b. 

Krylov matrix Kj =[ b Ab A2b ... Aj−1b ] . 

Methods to construct a basis for К
j
 :

      Arnoldi's method and Lanczos method 

Approaches to choosing a good x
j
 in  К

j
 :

●  Ritz-Galerkin approach: r
j
=b -Ax

j
 is orthogonal to К

j 
 

(Conjugate Gradient)

●  Minimum Residual approach r
j
 has minimum norm for x

j
 in К

j 

(GMRES and MINRES)

●  Petrov-Galerkin approach: r
j
 is orthogonal to a different 

space К
j
(AT) (Biconjugate Gradient) 
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Arnoldi´s Method

  The best basis q
1
,...,q

j
 for the Krylov subspace К

j
  is orthonormal. 

Each new q
j
 comes from orthogonalizing t = Aq

j−1
 to the basis vectors 

q
1
,...,q

j
 that are already chosen. The iteration to compute these 

orthonormal q’s is Arnoldi’s method. 

q
1
 = b / ||b|| % Normalize b to ||q

1
|| = 1 

  for j = 1,...,n−1 % Start computation of q
j+1

 

       t = Aq
j
 % one matrix multiplication 

      for i = 1,...,j % t is in the space K
j+1

          h
ij 
= qT

i
 % h

ij
qT

i  
=projection of t on q

i
  

  t = t - h
ij
q

i
 % Subtract that projection 

      end; % t is orthogonal to q
1
,...,q

j

     hj+1,j   
= ||t|| % Compute the length of t

    q
j+1

 = t / h
j+1,j

 % Normalize t to  ||q
j+1

||=1

end %q
1
,... q

n 
are orthnormal

 

AQ 
n-1

=
 
Q 

n 
H

n,n-1                            
H

n,n-1
is upper Hessenberg matrix
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Lanczos Method

Lanczos method is specialized Arnoldi iteration, if A is 
symmetric (real) 
 H

n-1,n-1 
=

 
QT

n-1 
A Q

n-1

 

H
n-1,n-1 

is tridiagonal and this means that in the orthogonalization process, each 

new vector has to be orthogonalized with respect to the previous two vectors 
only,since the inner products vanish. 

 

Β
0
=0, q

0
 =0,  b= arbitrary, q

1
=b / ||b|| 

  for i = 1,...,n−1 

       v = Aq
j
 

       α
i 
= qT

i 
v

       v = v –Β
i-1 

q
i-1

 - α
i
q

      Βi   
= ||v|| 

    q
j+1

 = v / Βi

end
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Minimum Residual Methods
Problem: If A is not symmetric positive definite, 

CG is not guaranteed to solve Ax=b. 

Solution: Minimum Residual Methods. 

Choose x
j 
in the Krylov subspace К

j 
so that ||b - Ax

j
|| is minimal

The first orthonormal vectors q
1
,...,q

j
 go in the columns Q

j
 so Q

j

TQ
j
= I

Setting x
j
 = Q

j
 y

|| r
j
 ||= ||b - Ax

j
|| = ||b – AQ

j
y|| = ||b – Q

j+1 
H

j+,1,j
y||

Using first j columns of Arnoldi's formula AQ = QH

First j columns of QH =
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Minimum Residual Methods

The problem becomes:
Choose y to minimize

                                    || r
j
 ||= ||QT

j+1
b –

 
H

j+,1,j
y||

This is least squares problem. 

Using zeros in H and Qt
j+1

b to find a fast algorithm that computes y.

GMRES (Generalised Minimal Residual Approach)
A is not symmetric and the upper triangular part of H can be full.
                 All previously computed vectors have to be stored.

MINRES:(Minimal Residual Approach)
A is symmetric (likely indefinite) and H is tridiagonal.  
               Avoids storageof all basis vectors for the Krylov subspace

Aim: to clear out the non-zero diagonal below the main diagonal of H.
This is done by Givens rotations
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GMRES

Algorithm: GMRES
q

1
 = b / ||b || 

for j = 1, 2, 3...
    step j of Arnoldi iteration 
    Find y to minimize || r

j
 ||= ||QT

j+1
b –

 
H

j+,1,j
y||

    x
j
 = Q

j 
y

Full-GMRES :
The upper triangle in H can be full and step j becomes expensive and possibly 
it is inaccurate as j  increases. 

GMRES(m):
Restarts the GMRES algorithm every m  steps However tricky to choose m.
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Petrov-Galerkin approach

● r
j
 is orthogonal to a different space К

j
(AT)

● BiCG (Bi-Conjugate Gradient)

● QMR (Quasi Minimum Residual)

● CGS (Conjugate Gradient Squared)
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Lanczos Bi-Orthogonalization Procedure

●Extension of the symmetric 
Lanczos algorithm

●Builds a pair of bi-orthogonal 
bases for the two subspaces
K

m
(A, v

1
) and K

m
(AT,w

1
)
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Bi-Conjugate Gradient (BiCG)
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Quasi Minimum Residual (QMR)
●QMR uses unsymmetric Lanczos algorithm to generate a basis for the Krylov 

subspaces
●The lookahead technique avoids breakdowns during Lanczos process and makes 

QMR robust.
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Conjugate Gradient Squared (CGS)
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●Stationary Iterative Solvers : 

● Jacobi, Gauss-Seidel, SOR
●Non-Stationary Solvers:

● Krylov subspace methods
● Conjugate Gradient

● Symmetric postive definite systems

● GMRES and MINRES
● Non-symmetric matrices, but expensive

● Bi-CG
● Non-symmetric, two matrix-vector product

● QMR
● Non-symmetric, avoids irregular convergence of BiCG

●  CGS
● Non-symmetric, faster than BICG, does not require transpose 

Summary
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Thank You !


