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The survey of chemical compounds and their reaction
is an important part of chemistry. But modeling these
processes is quite cumbersome and a number of methods
can be applied to tackle this problem. Density Functional
Theory (DFT) is one possibility for that. It provides a
much higher accuracy than molecular dynamics with em-
pirical potentials, but it is computational less expensive
than the typical Hartree-Fock method. The coarse outline
of a computational algorithm and some post-processing
options will be given here. This report and the talk
held at the Joint Advanced Spring School in St. Peters-
burg are strongly based on the the PhD thesis of Thomas
Grauschopf [1] and the nice book of Koch and Holthausen
[2].
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1 Introduction

Density Functional Theory (DFT) is a method to suc-
cessfully describe the behavior of atomic and molecular
systems, taking in account their full quantum mechanical
interaction. It is used for instance in:

• structural prediction of chemical compounds

• simulation of chemical reactions

• high precision molecular dynamics

• predicting/validating spectroscopic data

• and many more

But still this method is computational rather expensive
and for some given problems the computations can take
timescales of months. So parallelization is also a big issue
in this branch of computational science.
DFT is using taking in account quantum mechanics. But
on can also describe large molecular systems by molec-
ular dynamics with empiric potentials. Empiric poten-
tials are represented by analytic functions, which are fit-
ted to experimental data or verified through statistical
physics. The probably best known empiric potential is
the Lennard-Jones potential

Lij = ε
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)12

− 2
(
r0
rij

)6
]
, (1)

which is used to model inert gases. As you can see in (1)
it is defined as a pairwise potential. That means the total
energy of the system will be calculated by

L =
∑
i>j

Lij . (2)

But by doing that we actually make an error, because the
real physical potential between more than two particles
cannot be described by a sum of the pairwise interac-
tions. This is a systematic error coming with the nature
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of empirical potentials. Another disadvantage is, that the
nature of bonding is not simulated itself, but packed into
the potentials. So they are not useful to simulate the
chemical bonding of atoms and molecules in detail. But
the huge advantage of using this potentials is the low com-
putational effort to compute them. Their derivatives are
also relatively easy to derive, so that the interaction forces
for molecular dynamics simulations can be implemented
and executed quite fast, even for a really large number
of objects. But we see, that we need to take in account
quantum mechanics to simulate molecular systems prop-
erly.

2 Basics In Quantum Mechanics

Quantum mechanics bears some fundamental differences
to classical mechanics. In classical mechanics a system
is determined by the position ~x and linear momentum ~p
of every particle in the system. If ~x and ~p are exactly
known at one point in time, all points in the phase space
can be calculated from this state (in the past as well as
in the future). But unfortunately it is not possible to
describe every branch of physics in this matter. For ex-
ample the strange behavior of electron being diffracted at
a small gap: even single electrons seem to be waves and
particles at the same time, because even a single electron
gets diffracted in that gap, eventhough there is no other
electron to interact with. But there are also some other
physical effects, which cannot be explained successfully
without quantum mechanics. For instance:

• Black Body Radiation

• The Photoelectric Effect

• The detailed structure of atoms

The basic idea of Quantum mechanics is, that it is not
possible to know the position ~x and the linear momentum
~p with infinite precision at the same time. This fact is
known as Heisenberg’s Uncertainty Principle:

∆x∆p ≥ h̄

2
. (3)

In this equation we can see the constant h̄, which is de-
fined as h̄ = h

2π . h is Planck’s constant and it represents
the smallest possible package of energy. The principle (3)
shows us that an exact measurement of ~x results in a fuzzy
measurement in ~p and vice versa. This is the basic prob-
lem of quantum mechanics and leads to a description of
physics which is based on probabilities, due to the incom-
plete knowledge of the state of a system. The state of an
object cannot be determined by a measurement anymore,
because a measurement is changing the state of a system
on these small scales.

2.1 Wave Function

In the previous section we saw, that a system in the quan-
tum world cannot be described by ~x and ~p. We need to
describe an object in a more probabilistic view. That is

realized through the wave function ψ. It is in general a
complex function and fulfils the following property:∫

ψψ∗d~x =
∫
|ψ2|d~x = 1 (4)

But ψ is a rather abstract notation, because it can be
finite or infinite vector ~ψ or a function with a finite or
infinite number of variables ψ(x1, ..., xN , ...). But all this
representations of the wave functions must be part of the
Hilbert space. This is a complete vector space, where a
scalar product is defined. If the scalar product of two
members of the Hilbert space is zero, these two elements
are orthogonal. This fact will later be an important foun-
dation of DFT. The physical interpretation of the wave
function can also be seen in (4). The space integral of the
square of the absolute value of ψ has to be normalized to
one, so that it can be interpreted as a probability density.
The wave function gives us a clue, where to find a particle
with high or with low probability.

2.2 Schrödinger Equation

But now we also need a new formalism to deal with the
wave function, because we cannot apply classical mechan-
ics on it. The basis formulation of the behavior of a quan-
tum system is done by the general Schrödinger equation:

ih̄
∂

∂t
ψ(~x, t) = Hψ(~x, t). (5)

This equation has a time dependency on the lefthand side
and is so able to describe the spatial and time evolution of
a system. But for the problems we are going to approach
with DFT, we only need to take in account the stationary
solution of the Schrödinger equation:

Hψi(~x) = Eiψi(~x). (6)

This equation is an eigenvalue problem with the eigen-
values Ei and the eigenvectors ψ(~x). But Ei is not only
an eigenvalue, it also represents the energy of the cor-
responding wave function ψi. So the state ψ0 with the
lowest energy is the ground state of a system. We can
also find the principle of the Hilbert space again in this
equation, because all the eigenvectors ψi stand perpen-
dicular on each other as it was required in the previous
section.
The H on the righthand side is the Hamilton operator,
which acts on the wave function of the system. It returns
its the kinetic and potential energy of the system. Classi-
cally we would compute it by summing up all kinetic and
potential energies in the system but for a wave function
we derive it by

H = −1
2

∆ + V (~x). (7)

We can see that the kinetic energy of the system is derived
by the Laplacian at this position. We can now reformulate
(6) to

−1
2

∆ψi + V ψi = Eiψi. (8)

This eigenvalue problem can be solved analytically, but
unfortunately only for system with one electron like H,
He+, Li2+. . . .
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Figure 1: The s and p orbitals of hydrogen. The drawn
objects represent the area, in which the proba-
bility density to find an electron at this position.

2.3 Born-Oppenheimer-Approximation

Now we know the basic rules of quantum mechanics and
can now go into further details. The main goal of DFT is
to simulate the behavior of molecular systems and in this
system we have typically a number of atomic nuclei Nn
and a corresponding and higher number of electrons Ne.
To now be able to solve (6) for this system, the dimension-
ality increases corresponding to 3(Ne+Nn), because every
particle has one degree of freedom for every direction in
space. A really useful way to reduce the dimensionality
of the problem is the assumption, that the atomic nuclei
are stationary in time. This assumption is based on the
different masses of the nuclei and the electrons. Even for
a hydrogen atom the nucleus is about 2000 times heav-
ier than the electron bonded to it. And due to that high
mass of the nuclei the electrons move on much shorter
timescales than the nuclei and one can assume them to
be not moving at all. The dimensionality is now only 3Ne.

3 DFT

We now proceed with the details of the density functional
theory. At first we want to point out some main applica-
tion areas of DFT. A direct product of DFT is the elec-
tronic structure of a molecule. We can instantly find the
occupation numbers of the different atomic orbitals and
the distribution of electrons in the molecule. One also
find the different energy states of a molecule besides the
ground state and one can so determine the energies of ex-
cited states. Another useful physical value we get out of
DFT computations is the energy of a given system. With
that one can do geometry optimization of molecules and
find reaction pathways. Or it is possible to determine
the eigenmodes of a system and with that one has the
opportunity to forecast oscillation spectra, which can be
directly validated by experiments. And it is also possible
to do molecular dynamics, with which one can directly
observe the interactions atomic systems. Unfortunately
this is only possible on really short timescales.
But there is not only DFT to simulate quantum systems.

One can also use the Hartree-Fock method to determine
the electron configuration with high precision. Unfortu-
nately this is much more computational expensive than
DFT. The advantage of DFT comes is based on the fact,
that the main components of it are only based on a scalar
function in space, which can be handled rather easy.

3.1 Basic Principle

The Hohenberg-Kohn theorem states that the potential
V of a system is only determined by the electron density
ρ (despite an additive constant). This density is the sum
of the probability densities of all electrons:

ρ(~x) =
∑
i

|ψi|2 =
∑
i

ψiψ
∗
i . (9)

And due to the fact that all other properties of a system
just depend on the potential V and the number of elec-
trons Ne, they all can be derived from the electron density
ρ. The second Hohenberg-Kohn theorem states that ev-
ery valid electron density ρ results in an energy, which is
equal or larger than the energy of the ground state.

E(ρ) ≥ E0 = E(ρ0) (10)

The electron density ρ is just a function of ~x and so we
avoid dealing with high dimensional wave function to de-
termine the systems properties.

3.2 Kohn-Sham Functions

The expression which connects the density ρ with the
physical behavior of the systems are the Kohn-Sham equa-
tions. These equation are derived from the Schrödinger
equation (6), one for each electronic spin σ:

Hσψσ = (Hkin + V ne + V coul + V xc)ψσ (11)
= εσψσ. (12)

The properties in (11) are defined as follows:

Hkin = −1
2
∆ (13)

V ne =
∑
n

Zn

|~x− ~Rn|
(14)

V coul =
∫

ρ(~x′)
|~x− ~x′|

d~x′ (15)

Following the Born-Oppenheimer approximation de-
scribed in section 2.3, the interaction potential between
nuclei and electrons can be described by a simple sum as
shown in (14). In this equation Zn represents the charge
of the nuclei and ~Rn the position of the nuclei. All four of
these properties are operators acting on the functions ψσ.
These are the Kohn-Sham orbital functions. They repre-
sent one electron wave functions, which do not interact.

3.3 Exchange-Correlation Potential

The interaction of these wave functions will be handled
by the special potential Vxc(ρ), which is the exchange cor-
relation potential. This potential shall catch the error we
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make by simulating the multi-electron system by a sum
of non-interacting one electron wave functions. Unfortu-
nately this potential cannot be derived analytically yet
and we have to stick to approximations in order to cal-
culate the the proper electron distribution. Despite this
potential the whole DFT is absolutely correct, so that bet-
ter and better approximations for Vxc lead to better and
better results for the simulation of microscopical systems.
A large part of DFT implementation is the determination
of the exchange correlation potential, because one can use
iterative methods to approach it. By starting with a ini-
tial guess for Vxc one can determine Exc by solving the
Kohn-Sham equations (11). From there we get an approx-
imate ρ and with that we can calculate Exc by

Exc =
∫
ρεxcd~x, (16)

where εxc is the exchange correlation energy functional,
which will be discussed later. And with this energy Exc we
can now find a new approximation for Vxc by a variational
derivative:

Vxc =
δExc
δρ

(17)

So we have the following dependency:

V (ρ(ψ)⇔ ψ(V ).

So we need to push the electron density ρ to be self consis-
tent with its own potential. And the algorithm we roughly
described to do that is the self-consistency cycle (SCF cy-
cle).

4 SCF Cycle

The cycle we roughly described before contains of the fol-
lowing main points, from which we will describe some in
detail:

1. choose set of basis functions w

2. set initial ρ

3. calculate Vclass = Vcoul + Vne

4. determine Vxc

5. build Hamilton matrix H

6. solve Kohn-Sham equations:
Hσψσ = (Hkin + Vclass + Vxc)ψσ

7. determine occupation numbers ni of the orbitals ψi

8. calculate ρ =
∑
niψ

∗
i ψ

9. if not converged: GOTO 3
else: calculate energy E and do postprocessing

Figure 2: The Slater function in one dimension with
w(x) = e−α|x| in blue and for w(x) = xe−α|x| in
green.

4.1 Set of Basis Functions

This basis functions w are used as a basis set for solving
the Kohn-Sham equations. A linear combination of this
functions will later represent the electron density of the
system. These basis functions have to be orthogonal to
allow a solution of the Kohn-Sham equation. They should
be also LCAO (Linear Combination of Atomic Orbitals),
because the correct solution will mostly be a superpostion
of this kind of orbitals. Due to that fact, the basis function
should contain a exponentially decreasing term, so that
an orbital is really vanished in far distance from its own
nucleus. The real atomic orbitals do also decrease in the
same matter, so that it is natural to choose the basis
functions also with this behavior. For that one can use
the Slater functions:

w(~x) = f(~x− ~x′)e−α|~x−~x
′|. (18)

As one can see, it provides the exponentially decaying
part with the parameter α > 0. With this parameter one
can steer the locality of the basis function. The function
f(~x − ~x′) can be any function in spatial coordinates as
spherical harmonics or cartesian polynomials. Its shape
and direction should be determined by the magnetic quan-
tum number. In figure 2 we can see two examples for
Slater functions. The clear advantage of this of Slater
functions is the correct exponential decay. But due to the
fact that we have to integrate complicated products of
basis functions and potentials later, we seek for an easy
evaluable analytical solution. Unfortunately this is not
feasible with the Slater functions.
So another appropriate set of basis functions are Gauss

like functions:

w(~x) = f(~x− ~x′)e−α|~x−~x
′|2 . (19)

These functions provide the possibility to calculate inte-
grals and products of them analytically, so that a compu-
tational intensive numerical integration doesn’t have to be
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Figure 3: A simple Gaussian function with w(x) = e−x
2

in blue and a Gauss like function with another
function f(x) = x in green.

executed. Unfortunately they do not provide the right ex-
ponential decay, so that one is forced to circumvent that
by superposition of more than one Gauss like function.
These superposition shall provide the peak in the middle
as well as the slower exponential decay. In figure 3 we can
clearly see that it is decaying much faster than the Slater
function in figure 2.

4.2 Exchange Correlation Potential

As we mentioned before, the exchange correlation po-
tential and energy have an important role in DFT. The
crucial property to determine is the exchange correlation
functional εxc. The choice of the functional strongly in-
fluences the results of the computations. And this choice
strongly depends on the problem you want to solve. There
are a lot of functionals known in science and each is use-
ful for a special problem. But all these functionals can be
divided in a few main groups.
The easiest way to approximate this potential is the local
density approximation (LDA):

Exc =
∫
ρεxc (ρ) d~x (20)

This is the simplest possible approximation and just using
the electron density at a certain position ~x. But it is
still useful for the determination of equilibrium structures,
harmonic frequencies and charge moments of molecules.
The next more complicated approximation is the local
spin-density approximation (LSDA).

Exc =
∫
ρεxc(ρ↑, ρ↓)d~x (21)

The difference to LDA is the different evaluation of εxc. It
now depends explicitly on the two different spins, which
has the advantage, that the final result is not necessarily
symmetric. This is useful for systems with an odd number
of electrons.

The most general approach for the exchange correlation
functional is the general gradient approximation (GGA).
In this approximation one also take the gradient of the
local density into account.

Exc =
∫
ρεxc(ρ↑, ρ↓,∇ρ↑,∇ρ↓)d~x (22)

The GGA functional are most commonly used right now,
but they also produce a lot more computational effort
and they are much harder to implement. εxc is mostly
a rather complicated function. But with GGA one gets
really precise results, especially for bonding energies.

4.3 Solving the Kohn-Sham Equation

Now we have all the ingredients we need to build the
Hamilton matrix H.

Hij =
∫
wiHwjd~x (23)

and solve the eigenvalue problem of the Kohn-Sham equa-
tions (11). If we now diagonalize the Hamilton matrix H,
we get as a result a matrix Ψ filled with the eigenvectors
of the problem. We can now construct the orbitals of the
system by linearly combining the basis functions with this
eigenvectors, where as each reconstructed orbital has an
energy corresponding eigenvalue, which is the energy.

ψi =
∑
n

wnΨin (24)

We can now also assign the occupation numbers of the
orbitals by just filling them up, starting from the lowest
energy. As soon as we have done this it is possible to
calculate the new electron density ρ by

ρ =
∑
i

niψ
∗
iψi, (25)

where ni is either one for an occupied orbital or zero for
an unoccupied orbital. We now can start with the SCF
cycle again until it has converged.

5 Numerical Effort

This is a short section, which shall show you roughly,
where most of the computational power is used.
One big issue is the diagonalization of the Hamilton ma-
trix H. It is a process which takes O(N3) operations for
a N ×N matrix. One can circumvent this problem by ex-
ploiting symmetries in the simulated system. With that
the number of needed operation can be reduced dramati-
cally.
The next big issue is the SCF cycle itself. It contains
on the one side the diagonalization of the matrix, as well
as the computation of the exchange correlation poten-
tial Vxc, which is a complicated integral and variational
derivative. Also the integration of the basis functions with
that and other potentials is rather expensive for problems
with higher dimensions.
But after the SCF cycle some other computations can
take place, which can be also rather expensive. We will
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Figure 4: The typical mode of action of a typical chemical
reaction. The system is moving in direction of
the reaction coordinate over the transition state
to reach an energetic or entropic favorable state.
The amount of energy needed to reach the top
of the transition state is the activation energy.

discuss one of these methods shortly in the next section.
This computational intensive method still needs a lot of
time, even on modern CPU’s. So its parallelization is ab-
solutely crucial and one has to be able to implement all
these methods effectively in parallel, to be able to com-
pute the problems coming with modern biology and chem-
istry.

6 Postprocessing

As mentioned before the post processing of the energy
data found by the SCF cycle is also consuming a lot of
the computational resources. As an example for that we
will shortly describe one possible application field of DFT.
In computational chemistry it is of special interest to find
the reaction coordinate of chemical reaction. This reac-
tion coordinate is an abstract notion for the changes in the
electronic and spatial configuration of the initial chemical
compounds. During this reaction the energy of the system
typically changes. One needs a initial activation energy
to push the system over a hill of potential energy (tran-
sition state) and after overcoming this hill the reaction
moves on until it has reached the final state (compare fig-
ure 4) in which all the substrates reacted to the products.
In many cases it is not necessary to find the exact reac-
tion coordinate of a system, but the transition state. By
knowing this state and its energy one can easily determine
reaction parameter for macroscopic systems. But finding
this transition state is still hard to do, because it is a
first order saddlepoint of the potential energy surface (or
landscape) in a 3N−6 dimensional space. There are tech-
niques to search this transition state, but these methods
also involve a rather large number of energy calculation,
including also the gradient and second derivatives.

In this potential energy landscape one is also able to use
the second derivatives of the potential energy (the Hes-
sian matrix respectively) to find eigenmodes of a molecule.
For that one needs to diagonalize the Hessian of the po-
tential energy function of a certain configuration. The
eigenvalues in that diagonal and the corresponding eigen-
vectors give a good impression of all vibrational modes
of a molecule. Following this, it is also possible to derive
the oscillation spectra and compare them to experimental
results. And this is again a opportunity to validate the
initial DFT calculations.

We have seen the power and the limitations of density
functional theory. We hope that short report helped to
understand the general idea and some theoretical aspects
of it.
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