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Introduction




Origins...

Multigird is an entire approach to computational
problem solving, a collection of ideas...

Originally, for solving BVP's.

But later:

2 Parabolic and Hyperbolic PDE's

0 Purely algebraic problems with no physical grid
2 Optimization

0 Integral Equations

d



Capabalities

A wide variety of problems

Arbitrary regions and boundary conditions
An optimal solver (with the right setup)
Can be efficiently parallelized

Effectively treats local demands (Multilevel
Adaptive Methods)




Model Problems




What problem?

Multigrid methods were originally applied to
simple BVPs.

For simplicity we do the same here (for now!)
Let’s call this “Model Problem”:
~VZiu +Gu=f(x,y,z,...), 0<x,y,2,...<1, =0

Zero at boundaries.



Discretization

Two dimensional case:

_ +%}—mﬂj+—111+bz—nrw ~
h2 hz Gvij_fzj:
X Y
Vie = Vi =Vo; =V, =0, 1<i<m-1, 1<j<n-1.

Or more compactly:
Av =1

Direct and Relaxation methods are the two
large categories for solving such a problem.



Direct Methods

Determine a solution up to the machine’s
precision in a finite number of arithmetic
steps.

Gaussian Elimination is a prototype.

But we are interested in relaxation methods
here...



Basic Iterative Methods




Notation

u denotes the exact solution and v the current
approximation.

To associate u with a grid Q' v”Is used.
e IS used for error which is given by:
c=u-v
The residual i1s shown by r and is defined this
way:
r=1-Av



More on the Residual

Knowing that 4u =f, we can write the residual

equation:
Ae=r

It says the error will satisfy the same set of
equations as the unknown when the right
hand side is replaced by the residual.

The residual i1s simply the amount by which
the current approximation fails to satisfy our

problem.



A Simple Scheme: Jacobi

Jacobi Is solving the jth equation of system of
equations for the jth unknown using current
approximation for all other variables.

We can express the relaxation scheme in
matrix form:

A=D-L-U
= u=Ru+D'f, R,=D'(L+U)
So we write: v =R v + D'f.



Weighted Jacobi

We make a modification and introduce an
entire family of iterations called weighted
Jacobi (damped Jacobi).

In matrix form:
vII=R v +@D™'f, R =(1-0)/+0R,
Using the definition of the residual:
vl =v!Y 4 oD 'Y,

It can be shown that the closer oD 'is to 47 'the
more effective is our iteration scheme.



More Relaxation Schemes(1)

Gauss-Seidel: Components of the new
approximation are used as soon as they are
computed

In matrix form:

Vv<Rv+(D-L)'f, R,=(D-L|'U.
The order in which the components of vare
updated Is important.

An effective alternative to just sweeping in
ascending order Is red-black Gauss-Seidel.



More Relaxation Schemes(2)

Red-black Gauss-Seidel updates all even
components first, and then goes through the
odd components.

This scheme is very well suited for parallel
computation. (each sweep can be done by
several independent processors)



More Investigation(1)

Because these methods are stationary linear it
IS enough to work with the homogeneous
linear system 4v=o0and use arbitrary initial
guesses.

To study the one-dimensional case of the
model problem we use Fourier modes for the
Initial guess:

vj:sin(]kn), 0<j<n 1<k<n-1.
n



More Investigation(2)

Introducing the wavenumber (frequency), v,
designates the entire vector v with
wavenumber k.

To compare the introduced methods first the
weighed Jacobi with o = 2, is applied to the
one-dimensional version of the model problem
with f =oon a grid with 64 points.

Beginning with v,, v, and v, the iteration Is
applied 100 times.



Error

esults(1)

Here the norm of the error is plotted against
the number of iterations for all the three
methods. What is important now Is the
qgualitative behavior.
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Results(2)

Here the logarithm of the norm of the Jacobi
error is plotted against the number of
iterations.

This clear linear behavior indicates that the
error itself decreases geometrically with each
iteration:

This constant depends
on the wavenumber.

e

o0




More Realistic Situation(1)

In general most initial guesses (or equivalently
the right hand side) consist of different modes.

This is been simulated with an initial guess
consisting of the average of one low
frequency mode (k=1), a medium (k¥ =6) and
a high frequency ( =32).

The figure in the next slide shows the result
for weighted Jacobi applied to the problem.



More Realistic Situation(2)

The standard iteration converges very quickly
only as long as the error has high-frequency
components. The slower elimination of the
low-frequency components desgrades the
performance of the relaxation methods.




What to Conclude?

This drawback of the relaxation schemes can
be analytically proven.

Moreover, one can find an optimum for o to

reduce the smooth components of the error
more effectively.

This 1s not enough.



Elements of Multigrid




Why Considering Coarser Grids? (1)

So far we have seen that most of basic
iterative methods possess the smoothing
property.

One idea is to take advantage of a good initial
guess.

A well-known technique to obtain one is
perform some iterations on a coarse grid.

It Is cheaper due to fewer unknowns and
faster while convergence behaves like 1-0[r?)



Why Considering Coarser Grids? (2)

A smooth wave with £ =40n Q" with » =12 points
has been projected directly to the grid o*
with » = 6.

k=4 wawve on n=12 grid




Why Considering Coarser Grids? (3)

To state this more precisely, note that the grid

points of t
numberec

For the t

h . .

N mode:

(Zﬂm j = sin

n
So the kth mode on t

ne coarse grid are the even-
grid points of the fine grid.

1£k<n

2

\”/2j

:ij,

ne fine grid is the th

mode on the coarse grid. But there are half as
many modes onQ*as there are on Q.



The Starting Point ot Multigrid

Smooth modes on a fine grid look less smooth
on a coarse one.

This suggests that when relaxation begins to
stall, move to a coarser grid.

But how do we move??

Relaxation on the original equation 4u =f with
a arbitrary initial guess Is equivalent to
relaxing on the residual equation 4e =r with
the specific initial guesse =o.



Putting the Ideas Together (1)

Using the coarse grid to obtain better initial
guess:

0 Relax on Au =fon a very coarse grid to obtain an
Initial guess for the next finer grid.

0 Relax on 4u =fon Q*"to obtain an initial guess for
Qh

0 Relax on 4u =fon Q" to obtain a final approx.

The basis of the strategy “nested iteration.”



Putting the Ideas Together (2)

Using the residual equation to relax on error:
0 Relax on4u =fon Q"to obtain an approximation.

2 Compute the residual r =f- 4v"

Relax on the residual equation 4e = r on Q*" to obtain
an approximation to the error e"

0 Correct the approximation obtained on Q"with the
error estimate obtained on Q% :v" = v" + &%

Basis of the strategy “correction scheme.”
How do we transfer errors between grids?



Intergrid Transters; Interpolation(1)

There Is usually no advantage in using grid
spacing with ratio other than 2.

Transferring information form a coarse grid to
a fine one is called interpolation or
prolongation.

There are, of course, many methods!
Linear interpolation: 1’ v* =v’

Y
Vo =V

v =0 )20 o<



Intergrid Transters; Interpolation(2)

How well does this work?

We can show that interpolation is most
effective when the error is smooth.

Nested iteration and Correction scheme both
use interpolation, so are they only effective
when the error iIs smooth?

Happlily, these processes provide a
complement to relaxation that is most effective

when the error Is oscillatory.



Intergrid Transfers; Restriction

Form fine to coarse (72*).
One obvious restriction operator is injection:

_h

An alternative is called full weighting:

2 _ ]

1% —4(v§’j_1+2vé’j+vh ISan—l.

Jj 2 j+1 )9
Now we are ready to introduce our first
multilevel scheme.



Two-Grid Correction Scheme(1)

v« MG(Vh,fh).
Relax v, times on 4"u" =f"on Q"with initial guessv”

Compute the fine-grid residual r" =" — 4"v"and
restrict it to the coarse grid.

Solve 4*"e*" =r*on Q*"

Interpolate the coarse-grid error and correct the fine
grid approximation by v’ « v +e”.
Relax v, times on 4"u” =f"on Q’with initial guess v



Two-Grid Correction Scheme(2)

In practice v, Is often 1,2, or 3.

Here is the fortunate complement that the
scheme brings: Relaxation on the fine grid
eliminates the oscillatory components of the
error, leaving a relatively smooth error.



Numerical Example(1)

Weighted Jacobi with o = % is applied to the
one-dimensional model problem on a grid with
64 points.

The initial guess contains 16" and 40" modes.
(one quite smooth and one quite oscillatory)

The aforementioned two-grid correction
scheme with v, =v, =3 IS used.




Numerical Example(2); Results

After one relaxation sweep the 2-norm of the error
has been diminished to 57% of the norm of the initial
guess.

After three sweeps the reduction is 36%.

By one relaxation sweep on the coarse grid the error
will be reduced to 26%.

After three coarse-grid sweeps: 8%.

Correcting the fine grid approximation and performing
three relaxation sweeps: 3%.

Once again to the coarse grid and then three
relaxation sweeps: 1%.



More Advanced Schemes; V-Cycle(1)
v« Vh(vh,fh).
Relax v, times on 4"u" =f"on Q" with a given
Initial guess v’
If Q"=coarsest grid, then go to step 4.
Else
£ (_Izh(fh _Ahvh),
v« 0,

v Vzh(VZh,th )

Correct v'«v'+1,,v".
Relax v, timeson 4"v"=f"on Q"



More Advanced Schemes; V-Cycle(2)

In a V-Cycle scheme we use the two-grid
scheme within itself.

Here iIs the schedule of grids for V-Cycle:



More Advanced Schemes; u-Cycle(1)
v/ <—Muh(vh,fh).

Relax v, times on 4"u" =f"on Q" with a given
Initial guess v
If Q"=coarsest grid, then go to step 4.
Else

f2 (_[Ifh(fh_Ath),

v« 0,

v e Mp™ (Vzh,fzh) 1 times .

Correct v'«v'+1,,v".
Relax v, timeson 4"v"=f"on Q"



More Advanced Schemes; u-Cycle(2)

u-cycle is an entire multigrid cycling scheme
family and V-cycle is just one member of this
family (p=1).

W-cycle, shown below, is the case withu =2:



Full Multigrid V-Cycle(1)

So far we have developed only the correction
scheme.

The nested iteration idea has yet to be
explored.

Nested iteration suggests solving a problem
on Q* to obtain an initial guess for solving the
problem on Q.

But where does the initial guess for o* come
from?



Full Multigrid V-Cycle(2)

v« FMG"£").
If Q"=coarsest grid, set v" < 0and go to step
3.
Else £ <_]]f’“(fh),
v« FMG* (1),
Correct v « 12 v*".
v« Vh(vh,fh) v, times.



Full Multigrid V-Cycle(3)

We do some extra work to find the best initial
guess possible. But this is not only

Inexpensive, but easily pays for itself. The
result is a very powerful algorithm.

Here Is the schedule h
for FMG scheme In 4 levels: oh

4h

gh



Implementation




Writing a Code

We now want to turn to more practical issues
of writing a multigird program.

The experiment of many practitioners
suggests that such a program should be
highly modular.

This way, besides its simplicity, one can
change different components of his code.

We will see how effective that can be.



Data Structure(1)

Choosing an appropriate data structure is also
of great importance.

One way Is to declare a new structure that
groups together all the associated information
for each grid level.

Going further in this area without pointing a
specific language seems pointless since every
discussion would soon be outdated!



Data Structure(2)

In languages with more restrictive data
structures, like MATLAB and FORTRAN, there
seems to be a general agreement.

That is the solutions and the right-side vectors
on the various grids should be stored
contiguously in single arrays (so two arrays).

Actually, mutligrid codes started to “grow up”
In such an environment.



Complexity(1)

How much do the multigrid scheme cost in
terms of storage and computation?

Consider a d-dimensional grid with »“points.
For simplicity n is a power of two.

On the finest grid we need »‘ storage
locations for each array (two arrays).

From now on each grid needs 2™“times as
much storage as the finer grid before it.

Adding these term give a geometric series.



Complexity(2)

2n?

-2
The storage costs of multigrid algorithm

decreases relatively as the dimension of the
problem increases.

Same analysis gives an estimation of the
computational costs of multigird mehtods.

Note that in the results nest page the cost of
intergrid transfers, typically 10-20% of the cost
of the entire cycle, is neglected.

Storage= 2nd(1+ 27 427 427 ) <




Complexity(3)

In a V-cycle with v, =v, =1each level is visited
twice and grid o requires p~“work units, so
the computational cast for a V-cycle is:

2
1-277

2(1+2‘d +27% +...+2‘”d) < wuU.
With a slight modification for the FMG we can
obtain:

( 2 j(1+2d+22d+...+2”")< 2 wu.

2 1-27)’




Complexity(4); tinal points

We again can see with increasing the
dimension of the problem the relative
computational cost decreases in both scheme.

As expected, a single FMG cycle costs more
than a single V-cycle (the difference is less in
higher dimensions).

To reach a final idea which one is more
suitable we need to know how many cycles
they need to give satisfactory results.



Numerical Example(1)

We solve the two-dimensional problem
—uy —u,, = 2|1-6x2 |y (1 y? )+ (1= 6% 3 (1- x|
INn unit square with zero on the boundaries.

We aim to

a0 Compare results using different relaxation,
Interpolation and restriction operators

2 Make a conclusion about the effectiveness of the
V-cycle and FMG schemes



Numerical Example(2)

In comparing different operators more than
what introduced before here we add half-
Injection and cubic interpolation.

Half-injection in one-dimension is simply half
of the Iinjection operator.

Cubic interpolation in one-dimension is
defined this way: /=,

2j 7’

h 1 2h 2h 2h 2h
Vi = 16(_Vj_1 +9v + v, -V,



Results(1); Ditterent Operators

Relaxation Injection Full Weighting | Half-Injection
( Vi, V, ) Scheme | Linear | Cubic | Linear | Cubic | Linear | Cubic
(1,0) Jacobi - - 049 | 049 | 055 | 0.62
GS 0.89 0.66 0.33 0.34 0.38 | 0.37

RBGS - - 0.21 0.23 045 | 042

Cost 1.00 1.25 1.13 1.39 1.01 1.26

(1,1) Jacobi 0.94 0.56 0.35 0.34 0.54 | 0.52
GS 0.16 0.16 0.14 0.14 0.45 | 0.43

RBGS - - 0.06 0.05 0.12 | 0.16

Cost 1.49 1.75 1.63 1.88 1.51 1.76

(2,1) Jacobi 0.46 0.31 0.24 0.24 046 | 045
GS 0.07 0.07 0.08 0.07 0.40 | 0.39

RBGS - - 0.04 0.03 0.03 | 0.07

Cost 1.99 224 | 2.12 3.37 1.51 1.76




Results(2); Ditterent Operators

At least in this problem cubic interpolation is
noticeably more effective than linear one only
when injection is used for restriction.

Not surprisingly, you get what you pay for:
better convergence factor comes with higher
cost.

Parameter selection largely depends on what
we want: cost or performance?



Results(3); V-cycle or FMG?

Here, comparing FMG(L,D [ V2, D [ V2,1)
WU 1 WU
FMG(1,1) and V(1,2), S B B E
. . 8 7/2 4 16
for all grids FMG is less el 5 4 | 16
: 32 7/2 5 20
expensive than V-cycle. | 2| 75 | = | %
" 128 7/2 6 24
It confirms t.he factthat | >t 72 > =
for converging to the sS2) 72 7 | 28
. . _ 1024 72 8 32
level of discretization 2048] 72 o | 36

error, full multigrid methods are generally

preferable to simple V-cycles.




Diagnostic Tools(1)

Debugging can be the most difficult part of
creating a successful program. Here is a
short list of useful debugging techniques in
evaluating a mutigrid code:

Methodical Plan: modular! Focus should be
firstly on the solver.

Starting Simply: basic methods, simple
problems.

Homogenous Problem: norms of the residual
and the error.




Diagnostic Tools(2)

Residual Printout: on each level the norm of
the residual should decline to machine zero
at a steady rate.

Error Graph: is it oscillatory after coarse-grid
correction? Effectively smoothed by
relaxation? Any unusual behavior?

Two-Level Cycles: it Is necessary that the
two-level scheme work, test it!

There 1s no end to this list.



Nonlinear Problem




Nonlinearity

Up to now everything was linear!

Do we need to make any changes to treat
nonlinear problems?

Let’s take a look at the most significant
difference between linear and nonlinear
systems.

Consider the nonlinear system below (note

the new notation):
Au)=f



Residual Equation

From the definition of the residual we find the
new residual equation:

Alu)-Av)=r.
Even though u-v=¢ we cannot conclude that
Alu) - A(v) = Ale).
Since the solver now needs to solve a
nonlinear equation, it makes sense to take a

look at a classical relaxation method for such
a system.




Nonlinear Gauss-Seidel Relaxation

The same as linear GS, we form the jth
equation and update the corresponding
component:

v, <—Mj(vl,vz,...,vj_l,vjﬂ,...,vn), 1<j<n.

In cases where we cannot form the equation
explicitly, the following system should be
solved using a few steps of Newton method:

[Alv+se ) =, 1<j<n

When s is found: V ¢ V+sE



Newton-Multigrid

The new residual equation can be written:
Av+e)—Av)=r.
Expanding the first term in Taylor series about
v and truncating the series after two terms, we
have a linear equation:
J(V)e =T,

This system Is an approximation to the
nonlinear system. One highly recommended
option to solve it is multigrid.



Going Further...

Newton-multigrid can be effective, but it does
not use mutilgrid ideas to treat the nonlinearity
directly.

In a two-grid setting, the residual on the
coarser grid appears as:

Azh(VZh _|_e2h)_ Azh(vzh) .
We choose the coarse-grid residual to be the
restriction of the fine-grid residual:

[ 2h :];hrh :];h(fh _Ah(vh)).



The Nonlinear Version ot Multigrid

But what about the current approximation?

Using the same operator for the residual, we
restrict the current approximation on the fine
gird to the coarser grid.

2h 2h _ h
v =1"v".

Putting everything together in the residual
equation and solving it gives the coarse-grid
approximation for the error which can be
Interpolated to fine grid to correct the current
approximation. This is FAS.



Full Approximation Scheme (FAS)

FAS steps can be summarized this way:

0 Restrict the current approximation and its fien-grid
residual to the coarse grid.

0 Solve this coarse-grid problem:
AZh(uzh) :AZh(Vzh)+r2h.

0 Compute the coarse-grid approximation to the error

2 2 2
ehzllh—Vh.

0 Interpolate the error approximation up to the fine
grid and correct the current fine-grid approximation.

vie v+ 1) e



FAS Comments(1)

If the operator Is linear FAS reduces to the
linear two-grid scheme.

The process stalls at and only at the exact
solution.

The second step of the FAS procedure
Involves a nonlinear problem itself. In a two-
level scheme it Is solved with standard
relaxation method such as nonlinear GS.

A true FAS process would be done
recursively.



FAS Comments(2)

Thus, like its linear counterpart, FAS Is usually
Implemented as a V-cycle or W-cycle scheme.

The convergence of nonlinear iterations
depend critically on a good initial guess. Using
one FMG cycle can provide accuracy to the
level of discretization (whether we use
Newton-multigrid or FAS V-cycles).



Thank youl!




