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Introduction



Origins...

 Multigird is an entire approach to computational 
problem solving, a collection of ideas...

 Originally, for solving BVP's.
 But later:
 Parabolic and Hyperbolic PDE's
 Purely algebraic problems with no physical grid
 Optimization
 Integral Equations
 ...



Capabalities

 A wide variety of problems
 Arbitrary regions and boundary conditions
 An optimal solver (with the right setup)
 Can be efficiently parallelized
 Effectively treats local demands (Multilevel 

Adaptive Methods)



Model Problems



What problem?

 Multigrid methods were originally applied to 
simple BVPs.

 For simplicity we do the same here (for now!)
 Let’s call this “Model Problem”:

 Zero at boundaries.

  0     ,1,...,,0        ,,...,,2   zyxzyxfuu



Discretization

 Two dimensional case:

 Or more compactly:

 Direct and Relaxation methods are the two 
large categories for solving such a problem.
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Direct Methods

 Determine a solution up to the machine’s 
precision in a finite number of arithmetic 
steps.

 Gaussian Elimination is a prototype.
 But we are interested in relaxation methods 

here…



Basic Iterative Methods



Notation

    denotes the exact solution and    the current 
approximation.

 To associate    with a grid    ,    is used.
    is used for error which is given by:

 The residual is shown by    and is defined this 
way:
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More on the Residual

 Knowing that         , we can write the residual 
equation:

 It says the error will satisfy the same set of 
equations as the unknown when the right 
hand side is replaced by the residual.

 The residual is simply the amount by which 
the current approximation fails to satisfy our 
problem. 
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A Simple Scheme: Jacobi

 Jacobi is solving the   th equation of system of 
equations for the   th unknown using current 
approximation for all other variables.

 We can express the relaxation scheme in 
matrix form:

 So we write: 
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Weighted Jacobi

 We make a modification and introduce an 
entire family of iterations called weighted 
Jacobi (damped Jacobi).

 In matrix form:

 Using the definition of the residual:

 It can be shown that the closer       is to     the 
more effective is our iteration scheme.      

      JRIRDR     1101        f,vv

      .0101 rvv  D
1D 1A



More Relaxation Schemes(1)

 Gauss-Seidel: Components of the new 
approximation are used as soon as they are 
computed

 In matrix form:

 The order in which the components of   are 
updated is important.

 An effective alternative to just sweeping in 
ascending order is red-black Gauss-Seidel.  

    .11 ULDRLDR GG
         f,vv
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More Relaxation Schemes(2)

 Red-black Gauss-Seidel updates all even 
components first, and then goes through the 
odd components.

 This scheme is very well suited for parallel 
computation. (each sweep can be done by 
several independent processors)    



More Investigation(1)

 Because these methods are stationary linear it 
is enough to work with the homogeneous 
linear system          and use arbitrary initial 
guesses.

 To study the one-dimensional case of the 
model problem we use Fourier modes for the 
initial guess: 
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More Investigation(2)

 Introducing the wavenumber (frequency),    
designates the entire vector    with 
wavenumber  .

 To compare the introduced methods first the 
weighed Jacobi with          is applied to the 
one-dimensional version of the model problem 
with       on a grid with 64 points.

 Beginning with    ,     and    the iteration is 
applied 100 times.
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Results(1)

 Here the norm of the error is plotted against 
the number of iterations for all the three 
methods. What is important now is the 
qualitative behavior.



Results(2)

 Here the logarithm of the norm of the Jacobi 
error is plotted against the number of 
iterations.

 This clear linear behavior indicates that the 
error itself decreases geometrically with each 
iteration:

 This constant depends
on the wavenumber. 
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More Realistic Situation(1)

 In general most initial guesses (or equivalently 
the right hand side) consist of different modes.

 This is been simulated with an initial guess 
consisting of the average of one low 
frequency mode (       ), a medium (       ) and 
a high frequency (       ).

 The figure in the next slide shows the result 
for weighted Jacobi applied to the problem.

1k 6k
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More Realistic Situation(2)

 The standard iteration converges very quickly 
only as long as the error has high-frequency 
components. The slower elimination of the 
low-frequency components desgrades the 
performance of the relaxation methods. 



What to Conclude?

 This drawback of the relaxation schemes can 
be analytically proven.

 Moreover, one can find an optimum for    to 
reduce the smooth components of the error 
more effectively.

 This is not enough.





Elements of Multigrid



Why Considering Coarser Grids? (1)

 So far we have seen that most of basic 
iterative methods possess the smoothing 
property.

 One idea is to take advantage of a good initial 
guess.

 A well-known technique to obtain one is 
perform some iterations on a coarse grid.

 It is cheaper due to fewer unknowns and 
faster while convergence behaves like           . 21 hO



Why Considering Coarser Grids? (2)

 A smooth wave with       on     with         points 
has been projected directly to the grid           
with       .6n
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Why Considering Coarser Grids? (3)

 To state this more precisely, note that the grid 
points of the coarse grid are the even-
numbered grid points of the fine grid.

 For the   th mode:

 So the   th mode on the fine grid is the   th 
mode on the coarse grid. But there are half as 
many modes on     as there are on     . 

k

2
,

2
sin

2
sin 2

,2,

n
kw

n

jk

n

jk
w h

jk
h

jk 














 1       



k k

h2 h



The Starting Point of Multigrid

 Smooth modes on a fine grid look less smooth 
on a coarse one.

 This suggests that when relaxation begins to 
stall, move to a coarser grid.

 But how do we move?
 Relaxation on the original equation          with 

a arbitrary initial guess is equivalent to 
relaxing on the residual equation          with 
the specific initial guess      .
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Putting the Ideas Together (1)

 Using the coarse grid to obtain better initial 
guess:
 Relax on          on a very coarse grid to obtain an 

initial guess for the next finer grid.
.
.
.

 Relax on          on      to obtain an initial guess for    
            .

 Relax on          on      to obtain a final approx.
 The basis of the strategy “nested iteration.”
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Putting the Ideas Together (2)

 Using the residual equation to relax on error:
 Relax on          on      to obtain an approximation.
 Compute the residual                .
 Relax on the residual equation            on         to obtain 

an approximation to the error      . 

 Correct the approximation obtained on       with the 
error estimate obtained on                           .

 Basis of the strategy “correction scheme.”
 How do we transfer errors between grids?
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Intergrid Transfers; Interpolation(1)

 There is usually no advantage in using grid 
spacing with ratio other than 2.

 Transferring information form a coarse grid to 
a fine one is called interpolation or 
prolongation.

 There are, of course, many methods!
 Linear interpolation: hhh
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Intergrid Transfers; Interpolation(2)

 How well does this work?
 We can show that interpolation is most 

effective when the error is smooth.
 Nested iteration and Correction scheme both 

use interpolation, so are they only effective 
when the error is smooth?

 Happily, these processes provide a 
complement to relaxation that is most effective 
when the error is oscillatory. 



Intergrid Transfers; Restriction

 Form fine to coarse      .
 One obvious restriction operator is injection:

 An alternative is called full weighting:

 Now we are ready to introduce our first 
multilevel scheme.
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Two-Grid Correction Scheme(1)

 Relax     times on               on      with initial guess   .
 Compute the fine-grid residual                      and 

restrict it to the coarse grid.
 Solve                  on      .
 Interpolate the coarse-grid error and correct the fine 

grid approximation by 
 Relax     times on               on      with initial guess   .
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Two-Grid Correction Scheme(2)

 In practice    is often 1,2, or 3.
 Here is the fortunate complement that the 

scheme brings: Relaxation on the fine grid 
eliminates the oscillatory components of the 
error, leaving a relatively smooth error.

1v



Numerical Example(1)

 Weighted Jacobi with           is applied to the 
one-dimensional model problem on a grid with 
64 points.

 The initial guess contains 16th and 40th modes. 
(one quite smooth and one quite oscillatory)

 The aforementioned two-grid correction 
scheme with               is used.  
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Numerical Example(2); Results

 After one relaxation sweep the 2-norm of the error 
has been diminished to 57% of the norm of the initial 
guess.

 After three sweeps the reduction is 36%.
 By one relaxation sweep on the coarse grid the error 

will be reduced to 26%.
 After three coarse-grid sweeps: 8%.
 Correcting the fine grid approximation and performing 

three relaxation sweeps: 3%.
 Once again to the coarse grid and then three 

relaxation sweeps: 1%. 



More Advanced Schemes; V-Cycle(1)

1. Relax     times on               on      with a given 
initial guess   .

2. If     =coarsest grid, then go to step 4.
Else

7. Correct
8. Relax     times on               on      .
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More Advanced Schemes; V-Cycle(2)

 In a V-Cycle scheme we use the two-grid 
scheme within itself.

 Here is the schedule of grids for V-Cycle:



More Advanced Schemes;   -Cycle(1)

1. Relax     times on               on      with a given 
initial guess   .

2. If     =coarsest grid, then go to step 4.
Else

7. Correct
8. Relax     times on               on      .
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More Advanced Schemes;   -Cycle(2)

    -cycle is an entire multigrid cycling scheme 
family and V-cycle is just one member of this 
family (       ).

 W-cycle, shown below, is the case with       :
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Full Multigrid V-Cycle(1)

 So far we have developed only the correction 
scheme.

 The nested iteration idea has yet to be 
explored.

 Nested iteration suggests solving a problem 
on      to obtain an initial guess for solving the 
problem on     .

 But where does the initial guess for      come 
from?
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Full Multigrid V-Cycle(2)

2. If     =coarsest grid, set            and go to step 
3.

Else

5. Correct

6.                          times.
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Full Multigrid V-Cycle(3)

 We do some extra work to find the best initial 
guess possible. But this is not only 
inexpensive, but easily pays for itself. The 
result is a very powerful algorithm.

 Here is the schedule

for FMG scheme in 4 levels:



Implementation



Writing a Code

 We now want to turn to more practical issues 
of writing a multigird program.

 The experiment of many practitioners 
suggests that such a program should be 
highly modular.

 This way, besides its simplicity, one can 
change different components of his code.

 We will see how effective that can be.



Data Structure(1)

 Choosing an appropriate data structure is also 
of great importance.

 One way is to declare a new structure that 
groups together all the associated information 
for each grid level.

 Going further in this area without pointing a 
specific language seems pointless since every 
discussion would soon be outdated!



Data Structure(2)

 In languages with more restrictive data 
structures, like MATLAB and FORTRAN, there 
seems to be a general agreement.

 That is the solutions and the right-side vectors 
on the various grids should be stored 
contiguously in single arrays (so two arrays).

 Actually, mutligrid codes started to “grow up” 
in such an environment.



Complexity(1)

 How much do the multigrid scheme cost in 
terms of storage and computation?

 Consider a    -dimensional grid with    points.
 For simplicity n is a power of two.
 On the finest grid we need     storage 

locations for each array (two arrays).
 From now on each grid needs     times as 

much storage as the finer grid before it.
 Adding these term give a geometric series.

d dn

dn

d2



Complexity(2)

 Storage=
 The storage costs of multigrid algorithm 

decreases relatively as the dimension of the 
problem increases.

 Same analysis gives an estimation of the 
computational costs of multigird mehtods.

 Note that in the results nest page the cost of 
intergrid transfers, typically 10-20% of the cost 
of the entire cycle, is neglected.
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Complexity(3)

 In a V-cycle with              each level is visited 
twice and grid      requires     work units, so 
the computational cast for a V-cycle is:

 With a slight modification for the FMG we can 
obtain:   
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Complexity(4); final points

 We again can see with increasing the 
dimension of the problem the relative 
computational cost decreases in both scheme.

  As expected, a single FMG cycle costs more 
than a single V-cycle (the difference is less in 
higher dimensions).

 To reach a final idea which one is more 
suitable we need to know how many cycles 
they need to give satisfactory results.



Numerical Example(1)

 We solve the two-dimensional problem

in unit square with zero on the boundaries.
 We aim to
 Compare results using different relaxation, 

interpolation and restriction operators
 Make a conclusion about the effectiveness of the 

V-cycle and FMG schemes
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Numerical Example(2)

 In comparing different operators more than 
what introduced before here we add half-
injection and cubic interpolation.

 Half-injection in one-dimension is simply half 
of the injection operator.

 Cubic interpolation in one-dimension is 
defined this way:
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Results(1); Different Operators

 Relaxation Injection  Full Weighting  Half-Injection 
 21 ,vv  Scheme Linear Cubic Linear Cubic Linear Cubic 

 0,1  Jacobi - - 0.49 0.49 0.55 0.62 

 GS 0.89 0.66 0.33 0.34 0.38 0.37 
 RBGS - - 0.21 0.23 0.45 0.42 
 Cost 1.00 1.25 1.13 1.39 1.01 1.26 

 1,1  Jacobi 0.94 0.56 0.35 0.34 0.54 0.52 

 GS 0.16 0.16 0.14 0.14 0.45 0.43 
 RBGS - - 0.06 0.05 0.12 0.16 
 Cost 1.49 1.75 1.63 1.88 1.51 1.76 

 1,2  Jacobi 0.46 0.31 0.24 0.24 0.46 0.45 
 GS 0.07 0.07 0.08 0.07 0.40 0.39 
 RBGS - - 0.04 0.03 0.03 0.07 
 Cost 1.99 2.24 2.12 3.37 1.51 1.76 

 



Results(2); Different Operators

 At least in this problem cubic interpolation is 
noticeably more effective than linear one only 
when injection is used for restriction.

 Not surprisingly, you get what you pay for: 
better convergence factor comes with higher 
cost.

 Parameter selection largely depends on what 
we want: cost or performance?



Results(3); V-cycle or FMG?

 Here, comparing
FMG(1,1) and V(1,2),
for all grids FMG is less
expensive than V-cycle.

 It confirms the fact that 
for converging to the 
level of discretization
error, full multigrid methods are generally 
preferable to simple V-cycles.   

 FMG(1,1) V(2,1) V(2,1) 

N

 WU cycles WU 
4 7/2 3 12 
8 7/2 4 16 
16 7/2 4 16 
32 7/2 5 20 
64 7/2 5 20 
128 7/2 6 24 
256 7/2 7 28 
512 7/2 7 28 
1024 7/2 8 32 
2048 7/2 9 36 
 



Diagnostic Tools(1)

 Debugging can be the most difficult part of 
creating a successful program. Here is a 
short list of useful debugging techniques in 
evaluating a mutigrid code:

2. Methodical Plan: modular! Focus should be 
firstly on the solver.

3. Starting Simply: basic methods, simple 
problems.

4. Homogenous Problem: norms of the residual 
and the error. 



Diagnostic Tools(2)

1. Residual Printout: on each level the norm of 
the residual should decline to machine zero 
at a steady rate.

2. Error Graph: is it oscillatory after coarse-grid 
correction? Effectively smoothed by 
relaxation? Any unusual behavior?

3. Two-Level Cycles: it is necessary that the 
two-level scheme work, test it!

There is no end to this list.



Nonlinear Problem



Nonlinearity

 Up to now everything was linear!
 Do we need to make any changes to treat 

nonlinear problems?
 Let’s take a look at the most significant 

difference between linear and nonlinear 
systems.

 Consider the nonlinear system below (note 
the new notation):

  fu A



Residual Equation

 From the definition of the residual we find the 
new residual equation:

 Even though           , we cannot conclude that

 Since the solver now needs to solve a 
nonlinear equation, it makes sense to take a 
look at a classical relaxation method for such 
a system.

    .rvu  AA

evu 

     .evu AAA 



Nonlinear Gauss-Seidel Relaxation

 The same as linear GS, we form the  th 
equation and update the corresponding 
component:

 In cases where we cannot form the equation 
explicitly, the following system should be 
solved using a few steps of Newton method:

 When   is found:

j

  .1,,...,,,...,, 1121 njvvvvvMv njjjj        

   .1, njsA jjj       fv 

s js vv



Newton-Multigrid

 The new residual equation can be written:

 Expanding the first term in Taylor series about 
   and truncating the series after two terms, we 
have a linear equation:

 This system is an approximation to the 
nonlinear system. One highly recommended 
option to solve it is multigrid.

    .rvev  AA

  ,rev J

v



Going Further…

 Newton-multigrid can be effective, but it does 
not use mutilgrid ideas to treat the nonlinearity 
directly.

 In a two-grid setting, the residual on the 
coarser grid appears as: 

 We choose the coarse-grid residual to be the 
restriction of the fine-grid residual:

    .222222 hhhhhh AA rvev 
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The Nonlinear Version of Multigrid 

 But what about the current approximation?
 Using the same operator for the residual, we 

restrict the current approximation on the fine 
gird to the coarser grid.

 Putting everything together in the residual 
equation and solving it gives the coarse-grid 
approximation for the error which can be 
interpolated to fine grid to correct the current 
approximation. This is FAS.

.22 hh
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Full Approximation Scheme (FAS)

 FAS steps can be summarized this way:
 Restrict the current approximation and its fien-grid 

residual to the coarse grid.
 Solve this coarse-grid problem:

 Compute the coarse-grid approximation to the error 
:

 Interpolate the error approximation up to the fine 
grid and correct the current fine-grid approximation. 
 

    .22222 hhhhh AA rvu 

.222 hhh vue 

.2
2

hh
h

hh I evv 



FAS Comments(1)

 If the operator is linear FAS reduces to the 
linear two-grid scheme. 

 The process stalls at and only at the exact 
solution.

  The second step of the FAS procedure 
involves a nonlinear problem itself. In a two-
level scheme it is solved with standard 
relaxation method such as nonlinear GS.

 A true FAS process would be done 
recursively.  



FAS Comments(2)

 Thus, like its linear counterpart, FAS is usually 
implemented as a V-cycle or W-cycle scheme.

 The convergence of nonlinear iterations 
depend critically on a good initial guess. Using 
one FMG cycle can provide accuracy to the 
level of discretization (whether we use 
Newton-multigrid or FAS V-cycles). 



Thank you!!


