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Introduction

Multigrid methods, or more generally, Multilevel methods were originally developed to
solve boundary value problems on spatial domains. However, this should be considered
only as a start to these methods while today multigrid solvers are widely used for many
different problems. Two very large and broadly used families of partial differential
equations, Parabolic and Hyperbolic PDE’s, are now treated using multigrid idea. These
methods are applicable to problems where there is no actual grid (Algebraic Multigrid).
Moreover, in optimization problems and solving integral equations one can see methods
based on this idea.

Today problems of higher dimensions, in large scales and with very high accuracy demands
have left us with no choice other than parallelization. One very pleasant feature of
multigrid methods is that they can be efficiently parallelized. A Multilevel solver, with the
right setup, is optimal; still being able to implement such a method in parallel is very
important.

Going further one can name nonlinear problems as another type of the problems treatable
with multigrid methods. Nonlinear problems, because of their iterative nature, should be
treatable with multigrid. We will start developing multigrid idea for linear problems at
first. Since there is a significant difference between linear and nonlinear system of
equations, one, for sure, cannot use the same setup for nonlinear problems as linear ones.
There will be more details on this. As the last point it is worth mentioning that multigrid is
also suitable for treating the local demands. This is called Multilevel Adaptive Methods.

In studying multigrid it is of crucial importance to consider it as an entire approach to
computational problem solving. This means multigrid idea is not only not limited to some
specific family of problems, but also is applicable to domains with arbitrary geometries and
boundary conditions. In this way, one can say that multigrid is a collection of ideas.



Model Problems

As mentioned above, multigrid methods were originally applied to simple boundary value
problems. For the reason of simplicity, we do the same here. Equation (1) shows the model
problem:

~Viu+ou=f(xyz.) 0<xYy,2z.<1 >0 1)

Boundary conditions are set to zero. Here is a discretization of the model problem in two
dimensions:
a2V =V
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Equation (2) can be shown more compactly like a system of equations:

—Vig;+2v; =V, -V

Av =f (3)

Relaxation methods and direct methods are the two large categories for solving system of
equations in (3).

Direct methods determine a solution up to the machine’s precision in a finite number of
arithmetic steps. Gaussian Elimination is a prototype of them. But here we are interested in
relaxation methods that are discussed in the next chapter.



Basic Iterative Methods
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Denoting the exact solution by “u”, error by “e” and residual by “r”, the residual equation is
as follows:

r=f-Av (4)

This directly results in:

Ae=r (5)

Equation (5) says the error will satisfy the same set of equations as the unknown when the
right hand side is replaced by the residual. This will play an important role in setting up a
multigrid scheme for linear problems.

A very simple and familiar method to solve (3) is Jacobi. It solves the jth equation of system
of equations for the jth unknown using current approximation for all other variables. A
modification to it introduces an entire family of iterations called weighted Jacobi. Here, the
matrix form of the weighted (damped) Jacobi, shows how the new approximation is
computed using the old one (w is the relaxation factor):

v = vO 4 DO (6)

One other famous relaxation method is called Gauss-Seidel. In Gauss-Seidel the
components of the new approximation are used as soon as they are computed. This way the
pattern by which the domain is updated makes difference. In simple GS the components are
updated in ascending order. An effective alternative to this is called Red-Black Gauss-Seidel
in which the components are updated in two groups; for example first the even-numbered
grid points and then the odd-numbered ones. It is interesting to know that this scheme is
very well suited for parallel computation.

In order to investigate the effectiveness of these three introduced methods we study the
performance of the methods in solving homogeneous system of linear equations of (7) with
the initial guess of form (8).

Av=0 (7)

vj=sin(JkT”j, 0<j<n, 1<ks<n-1 (8)

“k” is called the wave number and is the number of half sine waves in the domain. In simple
words, the lower the wave number is the smoother is the wave that constitutes the domain.

The results for solving the one-dimensional model problem in a grid with 64 points and
three different initial guesses (k=1, 3 and 6) are shown below in figure (1):
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Figure(1). Results of performing 100 iterations
on the one-dimensional model problem with
weighted Jacobi, Gauss-Seidel and Red-black
Gauss-Seidel. The norm of the error is plotted
against the number of iterations.
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The qualitative behavior indicates that for all methods the convergence is highly dependent
on the wave number; waves with higher frequencies are damped more efficiently. In
contrast, smooth modes are being damped so slowly. This is called “smoothing property”.
Here a more realistic situation is shown where the initial condition contains more than one
frequency:
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n2r Figure(2). Performing 100 iterations of
aqk weighted Jacobi on a wave with three
modes (k=1, 6 and 32).
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Figure (2) clearly shows the weakness of iterative methods; they damp the components of higher
frequency very efficiently but experience a dramatic reduction in convergence speed afterwards. In
fact most of the basic iterative methods possess the smoothing property. Here is where the
multigrid enters!

Elements of Multigrid

We concluded in the last chapter that we more ideas to add to the iterative schemes in order to get
a powerful and efficient solver. One idea is to take advantage of a good initial guess. A good initial
guess can be obtained by performing some iteration on a coarse grid. On the one hand, this is
cheaper due to the fewer number of unknowns. On the other hand, the convergence behavior is
more ideal on a coarse grid since it improves with the increase of the grid size. The idea can be used
in a better way; iterating on the coarsest grid to obtain an initial guess for on finer grid and now
iterating on this grid to get a guess for another finer grid and so on. This is the basis of a strategy
called “nested iteration”.

A second idea is also worth mentioning. Below, in the figure (3), a wave in two grids is shown. On
the top, the grid has 12 grid points. At the bottom the same wave is represented on a coarser grid.

k=4 wave on n=12 grid

Figure(3). A wave with k=4 represented on a fine and a coarse grid.



We can say that the wave in the coarse grid seems to have the higher frequency. This is stated more
precisely in below:
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Equation (9) shows that a wave with wave number k on the fine grid has the same wave number on
the coarse grid (provided that k is within the mentioned range). Knowing that there are half as
many modes on the coarse grid as there are on the fine grid, the statement is confirmed. This
suggests that when relaxation begins to stall, move to a coarser grid. This is the basis of a strategy
called “correction scheme”.

Both strategies mentioned need to move between grids of different size. Moving from a fine grid to
a coarser one is called restriction. One obvious operator is direct injection which only uses the grid
points that are also in the coarse grid. There are, of course, many other methods to perform this. An
example is full weighting; but what is of great importance is that one should come to a compromise
in choosing among these operators since there is no guarantee to, necessarily, get a better result
(say convergence rate) by using a higher order operator. This also applies to the other intergrid
transfer family, namely interpolation, which is transferring information from a coarse grid to a fine
one. Interpolation (linear interpolation is an example) is mostly effective when the error is smooth,
so multigrid schemes should also deal with this difficulty. We will see that these schemes provide a
complement which is effective even when the error is oscillatory. Now we have enough means to
introduce one simple multigrid scheme which is a basis for many other ones: Two-Grid Correction
Scheme. Here the algorithm is described (To associate a grid to a vector or matrix its superscript
represents its grid size):

v« MG(vh, 1)

1. Relax v; times on A™u”=f" on Q" with initial guess v" .

2. Compute the fine-grid residual r*=f"-A"v" and restrict it to the coarse grid.

3. Solve A2he2h=r2h on Q%"

hiah

4. Interpolate the coarse-grid error and correct the fine grid approximation by v « v*+e".

h—fh h

5. Relax v, times on A"u on Q" with initial guess v .

[t is important that Two-Grid scheme be understood completely because other schemes introduced
here are natural extensions of it. Based on it a more advanced scheme can be obtained. This scheme
is called V-cycle; a short look at figure (4) explains it. V-cycle is the recursive use of the Two-Grid
scheme. Even more complicated schemes can be derived from the V-cycle itself, so if one fails to
understand the core idea behind the simple Two-Grid scheme it is probable that he or she faces lots
of difficulties in developing more advanced schemes. Having this on mind, we move on to the
algorithm description for the V-cycle.



v« Vh(vh 1)
1. Relax v, times on A"u=f" on Q" with a given initial guess . h

2.1f Q2" = coarsest grid then go to step 4.

Z2h
else f2" « [ZM(f" — AMWh) (12" is restriction)
4h
v <0
th — Vh(VZh, th) 2h
Figure(4).
3. Correct v/ «v" + I}, v2" V-cycle schedule
4. Relax v, times on A"u"=f" on Q".
V-cycle is a member of a more general family of multigrid cycles. The h
only difference in the algorithm is that the recursive call will not
happen only once (as in V-cycle) but u times. W-cycle (shown in figure oh
(5)) is the case when u = 2.
So far we only used the correction scheme idea. It is possible to still 4h
introduce more efficient schemes by employing the nested iteration
idea and combining it with the existing schemes. The result is FMG
(figure (6)). gh

Figure(5). W-cycle schedule

vl « FMG" (")
1.If Q*" = coarsest grid set v"* « 0 and go to step 3. h
else 21 « 2 (fM) oh

VZh - FMGZh(th)
4h

2. Correct v « [, v2h

gh
3. vl « VR(Vh 1) v, times.
Figure(6). FMG schedule
One concern can be the extra effort we do for obtaining a good initial guess. In fact Full Multgrid is
not only inexpensive, but easily pays for itself.



Nonlinear Problem

Up to now we developed a few schemes suitable for solving linear problems; but what about
nonlinear problems? Do we need to make any changes in what we have until now? In order to
answer this let’s take a look at the most significant difference between linear and nonlinear
systems. Consider the nonlinear system of equations below:

Alu)=f (10)

The definition of residual gives:

Alu)-A(v)=r. (11)

Up to this stage everything seems the same. Even though the error definition is also the same we
cannot conclude (12):

A(u)- A(v)= Ae). (12)
Apparently, a new scheme has to be developed. The new residual equation can be written as in
(13):

A(v+e)-A(v)=r. (13)

By expanding the first term in Taylor series about v and truncating the series after two terms, we
have a linear equation (J is the Jacobi matrix):

Ivle=r (14)

This linear system is an approximation to the nonlinear system of (10) and, of course, is highly
recommended to be solved by one of the schemes developed before. This scheme is called Newton-
Multigrid. Despite its being effective we need to develop another method since Newton-Multigrid
does not use the idea of multigrid directly to treat the nonlinearity.

In a two-grid setting, the residual on the coarser grid appears as:

A2 (Vzh PRl )_ A2 (Vzh ): p2h (15)

The coarse-grid residual can be the restriction of the fine-grid residual:

(2= 12 = 12— AT (V")) (16)



The current approximation on the coarse grid will also be obtained by restricting the fine grid
approximation with the same operator:

v = 120y, (17)

By solving the resulting nonlinear equation (by means of a nonlinear solver, Non-linear Gauss-
Seidel is a good example) on the coarse grid the error on this grid is calculated and can be
interpolated to the fine grid to correct the fine grid approximation. This scheme is called Fully
Approximation Scheme (FAS).

This two-step FAS is also a basis for more complicated methods. Analogously, a more useful FAS
should be implemented recursively, so variations like V-cycles and W-cycles are helpful. One last
comment is on the use of a good initial guess. It is important to know that the convergence of
nonlinear iterations depends critically on a good initial guess. As a result, using one FMG cycle can
provide accuracy to the level of discretization.
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