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1 Introduction

1.1 LK sequent calculus

First of all, we give a descripition of sequent calculus LK, which we will need later. The
propositional language of this calculus includes:

• Constants 0, 1

• The conjunction ∧ and the disjunction ∨ (are of unbounded arity)

• The negation ¬ (is allowed only in front of atoms)

There are several characteristics of the formula A in this language that we will use:

• The size |A| of A is the number of connectives and atoms in it.

• The depth dp(A) of A is the maximal nesting of ∨ and ∧ in A.

The following definition introduces a cedent:

Definition 1. Cedent is a finite (possibly empty) sequence of formulas denoted Γ,∆, ...

Now we are ready to give a definition of a sequent — the main object of the LK sequent
calculus:

Definition 2. Sequent is an ordered pair of cedents written Γ −→ ∆ (here Γ is called
antecedent and ∆ is called succedent).

A sequent is satisfied if at least one formula in ∆ is satisfied of at least one formula in
Γ is falsified. Empty sequent cannot be satisfied.

The inference rules of the LK sequent calculus are the following:

• Initial sequents

– −→ 1

– ¬1 −→
– 0 −→
– −→ ¬0

– p −→ p

– ¬p −→ ¬p
– p,¬p −→
– −→ p,¬p

• Weak structural rules Γ→∆
Γ ′→∆′



– exchange: Γ and ∆ are any permutations of A

– contraction: Γ ′ and ∆′ are obtained from Γ and ∆ by deleting any multiple
occurrences of formulas

– weakening: Γ ′ ⊇ Γ and ∆′ ⊇ ∆

• Propositional rules

–
∧

-introduction

A, Γ −→ ∆∧
iAi, Γ −→ ∆

Γ −→ ∆,A1 . . . Γ −→ ∆,Am
Γ −→ ∆,

∧
i≤mAi

where A is one of the Ai in the left rule

–
∨

-introduction

A1, Γ −→ ∆ . . . AmΓ −→ ∆∨
i≤mAi, Γ −→ ∆

Γ −→ ∆,A

Γ −→ ∆,
∨
iAi

where A is one of the Ai in the right rule

• Cut rule

Γ −→ ∆,A A, Γ −→ ∆

Γ −→ ∆

Definition 3. LK-proof of a sequent S from the sequents S1, . . . , Sm is a sequence
Z1, . . . , Zk such that Zk = S and each Zi is either an initial one or from S1, . . . , Sm,
or derived from the previous ones by an inference rule.

Definition 4. k(π) is the number of sequents in π. The size of the proof is the sum of
the sizes of the formulas in it (counting multiple occurrences of a formula separately)

Definition 5. Resolution refutation of sequents S1, . . . , Sm which contain no
∨
,
∧

is
an LK-proof of the empty sequent from S1, . . . , Sm in which no

∨
,
∧

occur.

This is obviously equivalent to the more usual definition of resolution with clauses and
the resolution rule as a resolution clause

¬pi1 , . . . ,¬pia , pj1 , . . . pjb

can be represented by the sequent

pi1 , . . . , pia → pj1 , . . . , pjb

and the resolution by the cut rule (and vice versa).



1.2 Protocols for Karchmer-Wigderson games

Definition 6. Let U, V ⊆ {0, 1}n be two disjoint sets. The Karchmer-Wigderson game
(KW-game) is played by two players A and B. Player A receives u ∈ U while B receives
v ∈ V . They communicate bits of information (following a protocol previously agreed on)
until both players agree on the same i ∈ 1, ..., n such that ui 6= vi. Their objective is to
minimize (over all protocols) the number of bits they need to communicate in the worst
case. This minimum is called the communication complexity (CC) of the game and
it is denoted by C(U, V ).

Boolean function B(p1, ..., pn) separates U from V if and only if B(x) = 1 holds (resp.
= 0) for all x ∈ U (resp. for all x ∈ V ).

Theorem 1. Let U, V ⊆ {0, 1}n be two disjoint sets. Then C(U, V ) is precisely the minimal
depth of a formula with binary ∧, ∨ separating U from V .

Proof 1. The proof of this theorem is classical and is left to the reader.

Definition 7. Let U, V ⊆ {0, 1}n be two disjoint sets. A protocol for the game on the
pair (U, V ) is a labelled directed graph G satisfying the following four conditions:

• G is acyclic and has one source (the in-degree 0 node) denoted Ø. The nodes with
out-degree 0 are leaves, all other are inner-nodes.

• All leaves are labelled by one of the following formulas:

ui = 1 ∧ vi = 0 or ui = 0 ∧ vi = 1

for some i = 1, . . . , n.

Every pair u ∈ U and v ∈ V defines for every node x a directed path P x
u,v in G from

the node x to a leaf: P x
u,v = x1, . . . , xh, where x1 = x, the edge S(u, v, xi) goes from xi to

xi+1 and xh is a leaf.

• There is a function S(u, v, x) (the strategy) such that S assigns to a node x and a
pair u ∈ U and v ∈ V the edge S(u, v, x) leaving form the node x

• For every u ∈ U and v ∈ V there is a set F (u, v) ⊆ G satisfying:

– Ø ∈ F (u, v)

– x ∈ F (u, v)→ P x
u,v ⊆ F (u, v)

– the label of any leaf from F (u, v) is valid for u, v

Such a set F is called a consistency condition

Definition 8. A protocol is called monotone iff every leaf in it is labelled by one of the
formulas ui = 1 ∧ vi = 0, i = 1, . . . , n.



Definition 9. The communication complexity of G is the minimal number t such
that for every x ∈ G the players (one knowing u and x, the other knowing v and x) decide
whether x ∈ F (u, v) and compute S(u, v, x) with at most t bits exchanged in the worst case.

Important examples of protocols are protocols formed from a circuit. Assume C is a
circuit separating U from V . Reverse the edges in C, take for F (u, v) those subcircuits
differing in the value on u and v, and define the strategy and the labels of the leaves in
an obvious way. This determines a protocol for the game on (U, V ) with communication
complexity 2.

Theorem 2. Let U, V ∈ {0, 1}n be two disjoint sets. Let G be a protocol for the game on
U , V which has k nodes and the communication complexity t. Then there is a circuit C of
size k2O(t) separating U from V . Moreover, if G is monotone, so is C.

On the other hand, any circuit (monotone circuit) C of size m separating U from V
determines a protocol (a monotone protocol) G with m nodes whose complexity is 2. The
following theorem says there is a similar converse construction.

Proof 2. Let G be a protocol from the game. The number of nodes reachable form x via
the edges defines the cost of x. For any u, v, the set F (u, v) together with the cost function
and the neighborhood function given by the strategy is a PLS-problem. By [1] (Thm. 3.1)
there is a circuit separating U from V of size at most

|
⋃
u,v

F (u, v)| · 2O(t) = k · 2O(t)

If the protocol is monotone so is the circuit.
The second part of the statement was noted above.

2 Interpolation theorem and semantic derivations

2.1 The Craig interpolation theorem

Definition 10. Interpolant of a valid implication A(p, q)→ B(p, r) where p = (p1, . . . , pn)
are the atoms occurring in both A and B, while q = (q1, . . . , qs) occur only in A and
r = (r1, . . . , rt) only in B, to be any Boolean function I(p) such that both implications

A(p, q)→ (I(p) = 1) and ((I(p) = 1)→ B(p, r))

are tautologically valid. If I(p) is defined by a formula (also denoted I) this means that
both implications

A→ I and I → B

are tautologies.

In the calculus LK the implication A→ B is represented by the sequent A −→ B and, in
general, the sequent A1, . . . , Am −→ B1, . . . , Bl represents the implication

∧
iAi →

∨
j Bj.



Theorem 3. Let π be a cut-free LK-proof of the sequent

A1(p, q), . . . , Am(p, q) −→ B1(p, r), . . . , Bl(p, r)

with p = (p1, . . . , pn) the atoms occurring simultaneously in some Ai and Bj, and q =
(q1, . . . , qs) and r = (r1, . . . , rl) all other atoms occurring in some Ai or in some Bj respec-
tively. Then there is an interpolant I(p) of the implication:

∧
i≤mAi −→

∨
j≤lBj whose

circuit-size is at most k(π)O(1).
If the atoms p occur only positively in all Ai or all Bj then there is monotone interpolant

with monotone circuit-size at most k(π)O(1).

Proof 3. Define two sets U, V ⊆ {0, 1}n by:

U = {u ∈ {0, 1}n | ∃qu ∈ {0, 1}s,
∧
i≤m

Ai(u, q
u)}

V = {v ∈ {0, 1}n | ∃rv ∈ {0, 1}t,
∧
j≤l

¬Bj(v, r
v)}

Note that the fact that the sequent A1, . . . , Am −→ B1, . . . , Bl is tautologically valid is
equivalent to the fact that the sets U, V are disjoint, and that any Boolean function separates
U from V iff it is interpolant of the sequent.

Using the proof π we define a protocol for the game on U, V .
Assume that player A received u ∈ U and B received v ∈ V . Player A fixes some

qu ∈ {0, 1}s such that
∧
i≤mAi(u, q

u) holds and player B fixes some rv ∈ {0, 1}t for which∧
j≤l ¬Bj(v, r

v) holds.
Exchanging some bits they will construct the path P = S0, . . . , Sh of sequents of π

satisfying the following conditions:

• S0 is the end-sequent, Sh is an initial sequent

• Si+1 is an upper sequent of the inference giving Si

• For any a = 0, . . . , h: if Sa has the form:

E1(p, q), . . . , Ee(p, q) −→ F1(p, r), . . . , Ff (p, r)

then
∧
i≤eEi(u, q

u) holds while
∨
j≤f Fj(v, r

v) fails.

Note that as the proof is cut-free and there are no ¬-rules, no formula in the antecedent
(resp. the succedent) of a sequent in the proof contains an atom ri (resp. the atom qi).

To find Sa+1 they proceed as follows:

• If Sa was deduced by an inference with only one hypothesis, they put Sa+1 to be that
hypothesis and exchange no bits.



• If the inference yielding Sa was the introduction of
∧
i≤gDi to the succedent the player

B, who thinks that
∧
i≤gDi is false, sends to A dlog ge bits identifying one particular

Di(v, r
v), i ≤ g, which is false. They take for Sa+1 the upper sequent of the inference

containing the minor formula Di

• Introduction of
∨
i≤gDi to the antecedent is treated similarly.

Let Sh be the initial sequent players arrive at in the path P. It must be one of the
following formulas: pi −→ pi or ¬pi −→ ¬pi for some i = 1, . . . , n. This is because
all other initial sequents either contain an atom ri in the antecedent or an atom qi in the
succedent, or violate the last condition from the definition of P.

If Sh is the former then ui = 1 ∧ vi = 0, if it is the latter then ui = 0 ∧ vi = 1.
The communication complexity of the defined protocol is ≤ dlog ge+ 2 ≤ dlog k(π) + 2.
Thus there is a circuit of size k(π)O(1) separating U form V . If all atoms occur only

positively in the antecedent or in the succedent of the end-sequent then the players always
arrive to an initial sequent of the form pi −→ pi. This yields the monotone case.

The proof of the theorem can be modified for the case when π is not necessarily cut-free
but no cut-formula contains atoms q and r at the same time. To maintain the condition that
q (resp. r) do not occur in the succedent (resp. the antecedent) we picture a cut-inference
with the cut-formula D as

¬D,Γ −→ ∆ D,Γ −→ ∆

Γ −→ ∆
or

Γ −→ ∆,D Γ −→ ∆,¬D
Γ −→ ∆

according to whether atoms q do or do not occur in D.
The modification of the proof is then straightforward as the truth-value of any cut-

formula is known to one of the players and he can direct the path by sending one bit.

2.2 Semantic derivations

Definition 11. Let N be a fixed natural number.

• The semantic rule allows to infer from two subsets A,B ⊆ {0, 1}N a third one:
A B
C

iff C ⊇ A ∩B

• A semantic derivation of the set C ⊆ {0, 1}N from the sets A1, . . . , Am ⊆ {0, 1}N
is a sequence of sets B1, . . . , Bk ⊆ {0, 1}N such that Bk = C, each Bi is either one
of Aj or derived from two previous Bi1 , Bi2 by the semantic rule

• Let X be a set of subsets of {0, 1}N . Semantic derivation B1, . . . , Bk is an X -
derivation iff all Bi ∈ X

Definition 12. Filter of subsets of {0, 1}N is a family X closed upwards ((A ∈ X )∧(B ⊇
A)→ B ∈ X )



If (u, qu, rv) ∈ A and (v, qu, rv) /∈ A either find i ≤ n such that ui = 1 ∧ vi = 0 or learn
that there is some u′ satisfying u′ ≥ u ∧ (u′, qu, rv) /∈ A (u ≤ u′ means

∧
i≤n ui ≤ u′i)

If (u, qu, rv) /∈ A and (v, qu, rv) ∈ A either find i ≤ n such that ui = 1 ∧ vi = 0 or learn
that there is some u′ satisfying v′ ≤ v∧ (v′, qu, rv) /∈ A The monotone CC w.r.t. U of A,
MCCU(A) is the minimal t ≥ CC(A) such that the first task can be solved communicating
≤ t bits in the worst case. MCCV (A) is defined similarly for the second task.

2.3 An interpolation theorem for semantic derivations

Definition 13. Let N = n+ s+ t be fixed. For A ⊆ {0, 1}n+s define the set Ã by:

Ã :=
⋃

(a,b)∈A

{(a, b, c) | c ∈ {0, 1}t}

where a, b, c range over {0, 1}n, {0, 1}s and {0, 1}t respectively, and similarly for B ⊆
{0, 1}n+t define B̃:

B̃ :=
⋃

(a,c)∈B

{(a, b, c) | b ∈ {0, 1}s}

Theorem 4. Let A1, . . . , Am ⊆ {0, 1}n+s and B1, . . . , Bl ⊆ {0, 1}n+t. Assume that there is
a semantic derivation π = D1, . . . , Dk of the empty set Ø = Dk from the sets Ã1, . . . , Ãm, B̃1, . . . , B̃l

such that CC(Di) ≤ t for all i ≤ k. Then the two sets

U = {u ∈ {0, 1}n | ∃qu ∈ {0, 1}s; (u, qu) ∈
⋂
j≤m

Aj}

and
V = {v ∈ {0, 1}n | ∃rv ∈ {0, 1}t; (v, rv) ∈

⋂
j≤l

Bj}

can be separated by a circuit of size at most (k + 2n)2O(t)

Moreover, if the sets A1, . . . , Am satisfy the following monotonicity condition w.r.t. U :

(u, qu) ∈
⋂
j≤m

Aj ∧ u ≤ u′ → (u′, qu) ∈
⋂
j≤m

Aj

and MCCU(Di) ≤ t for all i ≤ k, or if the sets B1, . . . , Bl satisfy:

(v, rv) ∈
⋂
j≤l

Bj ∧ v ≥ v′ → (v′, rv) ∈
⋂
j≤l

Bj

and MCCV (Di) ≤ t for all i ≤ k, then there is a monotone circuit separating U from V
of size at most (k + n)2O(t).



Proof 4. Let π = D1, . . . , Dk be a semantic derivation of Ø from Ã1, . . . , B̃l.
The two players A and B, one knowing (u, qu) ∈

⋂
j Aj and the other one knowing

(v, rv) ∈
⋂
j Bj, attempt to construct a path P = S0, . . . , Sh through π. S0 = Ø = Dk,

Sa+1 is one of the two sets which are the hypotheses of the semantic inference yielding
Sa and Sh ∈ {Ã1, . . . , B̃l}. Moreover, both tuples (u, qu, rv) and (v, qu, rv) are not in Sa,
a = 0, . . . , h.

If the players know Sa which was deduced in the inference X Y
Sa

then they first determine
whether (u, qu, rv) ∈ X and (v, qu, rv) ∈ X. There are three possible outcomes:

• both (u, qu, rv) and (v, qu, rv) are in X (Sa+1 := Y )

• none of (u, qu, rv), (v, qu, rv) is in X (Sa+1 := X)

• only one of (u, qu, rv), (v, qu, rv) is in X (stop constucting the path and enter a protocol
for finding i ≤ n such that ui 6= vi).

The players must sooner or later enter the third case as none of the initial sets Ã1, . . . , B̃l

avoids both (u, qu, rv), (v, qu, rv).

• We will define the protocol for the monotone case only (non-montone is similar).

• Assume that the sets A1, . . . , Am satisfy the monotonicity condition w.r.t. U and that
MCCU(Di) ≤ t for all i ≤ k (the case of the monotonicity w.r.t. V is analogous).

• The protocol has (k + n) nodes, the k steps of derivation π plus n additional nodes
labelled by formulas ui = 1 ∧ vi = 0, i = 1, . . . , n.

• The consistency condition F (u, v) consists of of those Dj such that (v, qu, rv) /∈ Dj

and of those additional n nodes whose label is valid for particular u, v.

The players use the protocol for solving the first task from the definition of the MCC.
There are two possible outcomes:

• They decide that the condition

∃u′ ≥ u, (u′, qu, rv) /∈ Dj

is true for u, v. Then they put S(u, v,Dj) := X if (v, qu, rv) /∈ X or Y otherwise.

• They find i ≤ n such that ui = 1 ∧ vi = 0. S(u, v,Di) is then the additional node
with the label ui = 1 ∧ vi = 0.

• By the monotonicity imposed on A1, . . . , Am, for every u′ occurring above it holds:
(u′, qu, rv) ∈

⋂
j≤mAj

• This implies that the players have to find sooner or later i ≤ n such that ui = 1∧vi =
0.



• By the assumption about the monotone communication complexity of all Dj, both the
relation x ∈ F (u, v) and the function S(u, v, x) can be computed exchanging O(t)
bits.

• As G has (k + n) nodes, theorem about connection between protocols and circuits
yields the wanted monotone circuit separating U from V and having the size at most
(k + n) · 2O(t).

3 Upper and lower bounds

3.1 Upper bounds for some interpolation theorems

Theorem 5. Assume that the set of clauses {A1, . . . , Am, B1, . . . , Bl} where:
Ai ⊆ {p1, . . . , pn,¬p1, . . . ,¬pn, q1, . . . , qs,¬q1, . . . ,¬qs}, i ≤ m
Bj ⊆ {p1, . . . , pn,¬p1, . . . ,¬pn, r1, . . . , rl,¬r1, . . . ,¬rl}, j ≤ l
has a resolution refutation with k clauses.
Then the implication: ∧

i≤m

(
∨

Ai) −→
∨
j≤l

(
∧
¬Bj)

has an interpolant I(p) whose circuit-size is knO(1)

Moreover, if all atoms in p occur positively in all Ai, or if all p occur only negatively
in all Bj, then there is a monotone interpolant whose monotone circuit-size is knO(1).

Proof 5. Let π = C1, . . . , Ck be a resolution refutation of A1, . . . , Bl. For a clause C
denote by C̃ the subset of {0, 1}n+s+t of all those truth assignments satisfying C. Then
π̃ = C̃1, . . . , C̃k is a semantic derivation of Ø from Ã1, . . . , B̃l.

Obviously, for any clause C both the communication complexity and the monotone
communication complexity of C̃ is at most CC(C̃) ≤ dlog ne + 2. Hence the previous
theorem yields circuit of size (k + 2n) · nO(1) ≤ k · nO(1). Similarly for the monotone case.

3.2 Lower bounds for proof systems

Assume that for a propositional proof system P we have a good interpolation theorem,
allowing good estimates of the complexity of the monotone interpolants.

Then implication which cannot have a small monotone interpolant must have long
P-proofs.

Definition 14. Let n, ω, ξ ≥ q be natural numbers, and let
(
n
2

)
denote the set of two-

element subsets of 1, . . . , n. The set Cliquen,ω(p, q) is a set of the following formulas in
the atoms pij, i, j ∈

(
n
2

)
, and qui, u = 1, . . . , ω and i = 1, . . . , n:

•
∨
i≤n qiu, for all u ≤ ω

• ¬qui ∨ ¬qvi, for all u < v ≤ ω and i = 1, . . . , n.



• ¬qui ∨ ¬qvj ∨ pij, for all u < v ≤ ω and i, j ∈
(
n
2

)
Definition 15. The set Colorn,ξ(p, r) is the set of the following formulas in the atoms
pij, i, j ∈

(
n
2

)
, and ria, i = 1, . . . , n and a = 1, . . . , ξ:

•
∨
a≤ξ ria, for all i ≤ n

• ¬ria ∨ ¬rib, for all a < b ≤ ξ and i ≤ n

• ¬ria ∨ ¬rja ∨ ¬pij, for all a ≤ ξ and i, j ∈
(
n
2

)
The expression Cliquen,ω → ¬Colorn,ξ is an abbreviation of the sequent whose an-

tecedent consists of all formulas in Cliquen,ω and whose succedent consists of the negations
of the formulas in Colorn,ξ.

This sequent is tautologically valid if ξ < ω.

Theorem 6. Assume that 3 ≤ ξ < ω and
√
ξω ≤ n

8logn
. Then the sequent

Cliquen,ω → ¬Colorn,ξ

has no interpolant of the monotone circuit-size smaller than:

2Ω(
√
ξ)

Corollary 1. Let n be sufficiently large and let ξ = d
√
ne, ω = ξ + 1. Then:

• Every resolution refutation of the clauses Cliquen,ω ∪ Colorn,ξ must have at least

2Ω(n
1
4 ) clauses

Proof 6. Theorem about upper bounds for resolution refutation with k clauses would imply
the existence of an interpolant with monotone circuit size knO(1). The hypothesis of the
previous theorem is fulfilled and so it must hold:

knO(1) ≥ 2Ω(n
1
4 )

and hence k ≥ 2Ω(n
1
4 )
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