Lower bounds for *k*-DNF Resolution on random 3-CNFs

Sergey Nurk

Mathematics and Mechanics Faculty Saint-Petersburg State University

JASS, 2009

Lower Bound for Res(k)

Resolution and Res(k)

Switching Lemma

Expanders

Random Restriction Lemma

Lower Bound for Res(k)

Resolution

Resolution RuleA,B - clauses
$$A \lor x \neg x \lor B$$
 $A \lor B$

Definition

- The width $\omega(C)$ of a clause C is the number of literals in C.
- The width ω(τ) of a set of clauses τ (in particular the width of a resolution proof) is the maximal width of the clauses appearing in this set.
- The *size* of a resolution proof is the number of different clauses in it.

Definition

Consider an unsatisfiable set of clauses τ . Denote by $S_R(\tau)$ the size of minimal refutation of τ . Denote by $\omega_R(\tau)$ the minimal refutation width over all possible proofs of τ .

Weakening

We will extend Resolution with weakening inferences:

A, B-clauses. If $A \subseteq B$, then $\frac{A}{B}$.

What is Res(k)?

k-DNF Resolution (Res(k)) is a generalization of Resolution that operates with k-DNFs instead of clauses.

Res(k) Inference Rules

A, B are *k*-DNFs, $1 \le j \le k$ and I, I_1, \ldots, I_j are literals

• Weakening:
$$\frac{A}{A \lor I}$$

• Cut: $\frac{A \lor \bigwedge_{i=1}^{j} I_i \quad B \lor \bigvee_{i=1}^{j} \neg I_i}{A \lor B}$
• AND-introduction: $\frac{A \lor I_1 \dots A \lor I_j}{A \lor \bigwedge_{i=1}^{j} I_i}$
• AND-elimination: $\frac{A \lor \bigwedge_{i=1}^{j} I_i}{A \lor I_i}$

Remark: Resolution = Res(1).

Strong Soundness

Important property: Res(k) *is strongly sound.* If *k*-*DNF F* is inferred from *k*-*DNFs* F_1, \ldots, F_j , and t_1, \ldots, t_j are mutually consistent terms of F_1, \ldots, F_j respectively, then there is a term *t* of *F* implied by $\bigwedge_{i=1}^{j} t_i$.

Related Definitions

Definition

Res(k) refutation of unsatisfiable CNF τ is the inference of the empty clause from the clauses in τ using inference rules.

Definition

The size of Res(k) refutation is the number of lines it contains.

Definition

 $S_{R(k)}(\tau)$ denotes the minimal size of a Res(k) refutation of CNF τ .

Res(k) vs Res(k+1)

Fact: *Res*(k + 1) is exponentially more powerful than *Res*(k).

Decision Tree

Definition

Decision tree:

- Rooted binary tree.
- Every internal node labeled with variable.
- Edges leaving node correspond to whether the variable is set to 0 or 1.
- Leaves are labeled with either 0 or 1.

Remark: Every path from the root to a leaf may be viewed as a partial assignment.

Related Definitions

 $v \in \{0, 1\}$, decision tree T, DNF F

Definition

 $Br_{v}(T)$ denotes the set of paths that lead from the root to a leaf labeled v.

Definition *T* strongly represents *F* if for every $\pi \in Br_0(T)$, for all $t \in F, t|_{\pi} = 0$ and for every $\pi \in Br_1(T)$ there exists $t \in F, t|_{\pi} = 1$.

Definition

Representation height of F, h(F), is the minimal height of a decision tree strongly representing F.

Switching Lemma

Definition

DNF F, set of variables S.

If every term of *F* contains a variable from *S*, then *S* is a cover of *F*. The *covering number* of *F*, c(F), is the minimal cardinality of a cover of *F*.

Switching Lemma

Let $k \ge 1$, let s_0, \ldots, s_{k-1} and p_1, \ldots, p_k be sequences of positive numbers, and let *D* be a distribution on partial assignments so that for every $i \le k$ and every i-DNF *G*, if $c(G) > s_{i-1}$, then $Pr_{\rho \in D}[G|_{\rho} \ne 1] \le p_i$. Then for every k-DNF *F*:

$$Pr_{
ho\in D}\left[h(F|_{
ho})>\sum_{i=0}^{k-1}s_i
ight]\leq \sum_{i=1}^{k}2^{(\sum_{j=i}^{k-1}s_j)}p_i$$

Proof of Switching Lemma

- Induction on k.
- k = 1: If $c(F) \le s_0$ then at most s_0 variables appear in F. If $c(F) > s_0$ then $Pr(h(F|_{\rho}) \ne 0) \le Pr_{\rho \in D}[F|_{\rho} \ne 1] \le p_1$
- $k \to k + 1$: (k + 1)-DNF F.
- If $c(F) > s_k$ then $Pr(h(F|_{\rho}) \neq 0) \leq Pr_{\rho \in D} \left[F|_{\rho} \neq 1\right] \leq p_{k+1}$
- Consider $c(F) \leq s_k$. *S* is a cover of size at most s_k . π -assignment to the variables in *S*. $F|_{\pi}$ is a k-DNF. $Pr_{\rho \in D} \left[\exists \pi \in \{0,1\}^S : h((F|_{\rho})|_{\pi}) > \sum_{i=0}^{k-1} s_i \right] \leq 2^{s_k} (\sum_{i=1}^k 2^{(\sum_{j=i}^{k-1} s_j)} p_i) < \sum_{i=1}^{k+1} 2^{(\sum_{j=i}^k s_j)} p_i$
- If ∀π ∈ {0,1}^S h((F|_ρ)|_π) ≤ ∑_{i=0}^{k-1} s_i then we may construct a decision tree of height at most ∑_{j=i}^k s_j strongly representing F|_ρ.

One More Switching Lemma

Corollary

k, *s*, *d* are positive integers, $\gamma, \delta \in (0, 1]$. *D* is a distribution on partial assignments s.t. \forall *k*-*DNF G* $Pr_{\rho \in D}[G|_{\rho} \neq 1] \leq d2^{-\delta(c(G))^{\gamma}}$. For every *k*-*DNF F*:

$$extsf{Pr}_{
ho \in extsf{D}} \left[extsf{h}(extsf{F}|_{
ho}) > 2 extsf{s}
ight] \leq extsf{dk} 2^{-\delta' extsf{s}^{\gamma'}}$$

where $\delta' = 2(\delta/4)^k$ and $\gamma' = \gamma^k$.

Proof of the Corollary

•
$$s_i = (\delta/4)^i s^{\gamma^i}$$
, $p_i = d2^{-4s_i}$.
• $s_{i-1}/4 \ge (\delta/4)s_{i-1} = (\delta/4)^i s^{\gamma^{i-1}} \ge s_i$. So
 $\sum_{j=i}^k s_j \le \sum_{j>i} s_j/4^{j-i} \le 2s_i$

- For any *i*-DNF *G* with $c(G) \ge s_{i-1}$ $Pr_{\rho \in D}[G|_{\rho} \ne 1] \le d2^{-\delta(c(G))^{\gamma}} \le d2^{-\delta s_{i-1}^{\gamma}} = 2^{-\delta(\delta/4)^{i-1}(s^{\gamma^{i-1}})^{\gamma}} = d2^{-4s_i}$
- After applying previous theorem we have that: For every k-DNF F $Pr_{\rho\in D} [h(F|_{\rho}) > 2s] \leq Pr_{\rho\in D} \left[h(F|_{\rho}) > \sum_{i=0}^{k-1} s_i\right] \leq \sum_{i=1}^{k} 2^{(\sum_{j=i}^{k-1} s_j)} p_i \leq \sum_{i=1}^{k} 2^{2s_i} (d2^{-4s_i}) \leq dk2^{-2s_k} = dk2^{-\delta' s'}$

$Res(k) \rightarrow Resolution$

Theorem

Let τ be a set of clauses s.t. $\omega(\tau) \leq h$. If τ has a Res(k) refutation s.t. for each line F of the refutation $h(F) \leq h$, then $\omega_R(\tau) \leq kh$.

Proof:

- *T_C* is a decision tree for *C* ∈ *τ*. For any line *F T_F* is a min height tree for *F*. For any partial assignment *π C_π* is a clause that contains negations of every literal in *π*.
- For π ∈ Br₀(T_Ø), C_π = Ø and for each C ∈ τ for the unique π ∈ Br₀(T_C), C_π = C. We construct narrow resolution refutation by deriving C_π for each line F and each π ∈ Br₀(T_F).

Proof part 2

- Consider *F* inferred from previously derived F_1, \ldots, F_j , $j \le k$. We construct a decision tree *T* of height $\le kh$ that represents $\bigwedge_{i=1}^{j} F_i$.
- The set {C_σ|σ ∈ Br₀(T)} can be derived using the weakening rule.
- For every *σ* ∈ *Br*₁(*T*) there exists *t* ∈ *F* satisfied by *σ*.
- Let $\pi \in Br_0(T_F)$ be given. For all $\sigma \in Br(T)$ consistent with $\pi \sigma \in Br_0(T)$.
- For each node ν in $T \sigma_{\nu}$ is the path from the root to ν . From the leaves to the root, we derive $C_{\sigma_{\nu}} \vee C_{\pi}$ for each ν so that σ_{ν} is consistent with π . When we reach the root we will have derived C_{π} .

Random 3-CNF's and Linear Systems

Definition

Denote by $\phi_{n,\Delta n}$ the random 3 - CNF with Δn clauses and n variables, in which every clause is chosen independently from the set of all $2^3 C_n^3$ clauses.

Definition

For each $\phi_{n,\Delta}$ we consider a $\Delta n \times n$ matrix $A_{n,\Delta n}$ and a vector $b \in \{0, 1\}^{\Delta n}$ s.t.:

- A_{n,Δn} [i, j] = 1 iff the *i*-th clause of φ_{n,Δ} contains the variable x_j.
- b[i] = (number of positive variables in the *i*-th clause) mod 2.

Remark: Each clause of $\phi_{n,\Delta n}$ is a semantical corollary of some linear equation of the system $A_{n,\Delta n}x = b$

Expanders

 $A \in \{0, 1\}^{m \times n}$, $I \subseteq [m]$, A_i -*i*th row of A.

Definition Boundary of I, ∂I , is a set of all $j \in [n]$ s.t. $\exists ! i \in I : j \in A_i$

Definition A is an (r, c)-boundary expander if

$$\forall I \subseteq [m] \ (|I| \le r \Rightarrow |\partial I| \ge c|I|)$$

Fact:

 $\forall \Delta > 0, c < 1 \exists \delta \text{ s.t.}$ with probability $1 - o(1) A_{n,\Delta n}$ is $(\delta n, c)$ -boundary expander.

CI

$$A \in \{0,1\}^{m \times n}, J \subseteq [n], I, I_1 \subseteq [m]$$

$$I \vdash_J I_1 \iff |I_1| \le r/2 \land \partial(I_1) \subseteq \left[\bigcup_{i \in I} A_i \cup J\right]$$

Definition

Closure J, CI(J), is a set of all rows which can be inferred from the empty set.

Lemma

If $|J| \leq cr/2$ then $|CI(J)| \leq c^{-1}|J|$

- $\{I_k\}$ s.t. $I_1 \cup \cdots \cup I_{\nu-1} \vdash_J I_{\nu}$.
- Consider the smallest k s.t. $|\bigcup_{\nu=1}^{k} I_{\nu}| > c^{-1}|J|$
- Since $|J| \le cr/2$ $|\bigcup_{\nu=1}^{k} I_{\nu}| \le r$ and since we are dealing with expander $|\partial(\bigcup_{\nu=1}^{k} I_{\nu})| > c(c^{-1}|J|) = |J|$

• But
$$\partial(\bigcup_{\nu=1}^k I_\nu) \subseteq J$$

Cle

 $A \in \{0,1\}^{m \times n}, J \subseteq [n], \quad I, I_1 \subseteq [m]$ $I \vdash_J^e I_1 \iff |I_1| \le r/2 \ \land \ \left| \partial(I_1) \setminus \left[\bigcup_{i \in I} A_i \cup J \right] \right| < (c/2)|I_1|$

Algorithm $Cl^e(J)$

```
I := \emptyset \ R := [m]
while (there exists I_1 \in R s.t. I \vdash_J^e I_1)

I := I \cup I_1

R := R \setminus I_1

end

output I;
```

Lemma

If
$$|J| < cr/4$$
 then $|Cl^e(J)| < 2c^{-1}|J|$

Proof

- Consider the sequence $I_1 \dots I_l$ appearing in the cleaning procedure. These sets are pairwise disjoint.
- $C_t := \bigcup_{k=1}^t I_k$. By T denote the first $t : |C_t| > 2c^{-1}|J|$
- Since |J| < cr/4 $|C_T| \le r$
- Due to expansion $|\partial C_T| > c|C_T|$, so $|\partial C_T \setminus J| > c|C_T| |J| \ge c|C_T|/2$
- But $|\partial C_T \setminus J| \leq c/2 \sum_{k=1}^T |I_k| = c/2|C_T|$

A little more about Cle

$$A \in \{0, 1\}^{m imes n}, J \subseteq [n]$$

 $I' = Cl^e(J), J' = \bigcup_{i \in I'} A_i.$

Lemma

Obtain \hat{A} by removing the rows corresponding to I' and columns to J'. \hat{A} is either empty or (r/2, c/2)-boundary expander.

- Consider $I \in \hat{A} : |I| \le r/2$. $\partial_A I \subseteq \partial_{\hat{A}} I \cup J \cup J'$
- If $|\partial_{\hat{A}}I| < (c/2)|I|$ then $|\partial_AI \setminus (J' \cup J)| < (c/2)|I|$ and $I' \vdash_J^e I$.

Local Consistence

For a term $t \ Cl(t) := Cl(Vars(t))$ and $Cl^e(t) := Cl^e(Vars(t))$ $A \in \{0, 1\}^{m \times n}, \ b \in \{0, 1\}^m$

Definition

Term *t* is *locally consistent* w.r.t. Ax = b if the formula $t \wedge [A_lx = b_l]$ is satisfiable, where l = Cl(t).

Lemma

If t is locally consistent then $\forall I \subseteq [m] : |I| < r/2$ the formula $t \wedge [A_I x = b_I]$ is satisfiable.

Proof.

If not then $\exists t' \in t, t' \in I$ s.t. $\sum_{i \in I'} (A_i x - b_i) + \sum_{x_j^e \in t'} (x_j - e) \equiv 1$ Then $\partial(I') \in Vars(t')$, hence $I' \in CI(t)$ and t is inconsistent. \Box $\textbf{A} \in \{0,1\}^{m \times n}$

Definition

G(A) is the bipartite graph between m row vertices and n column vertices with incidence matrix A. $d_A(V_1, V_2)$ denotes the shortest path between sets V_1 , V_2 in G(A)

Lemma

A is an expander. $I \in [m]$: |I| < r/2. Term $t : t \land [A_I x = b_I]$ is satisfiable. Then:

 \forall *l.c.* term t_1 with $|t_1| \leq k$ s.t. $d_A(Cl^e(t), t_1) > 4c^{-1}k$ the formula $t_1 \wedge t \wedge [A_lx = b_l]$ is also satisfiable.

- If not then $\exists t' \in t, t'_1 \in t_1, l' \in l$ s.t. $\sum_{i \in l'} (A_i x - b_i) + \sum_{x_j^e \in t'} (x_j - \epsilon) + \sum_{x_l^e \in t'_1} (x_l - \epsilon) \equiv 1$
- We consider such *L* = (*I*, *t*', *t*₁') with minimal number of equations. *G*_{*L*} is connected.
- $\partial(I') \subseteq Vars(t') \cup Vars(t'_1)$. t, t_1 are both consistent with $A_I x = b_I$, so t, t_1 are both non-empty.
- Case1. $|I' \setminus Cl^e(t)| > 2c^{-1}k$ $\left|\partial(I') \setminus \left[\bigcup_{i \in Cl^e(t)} A_i \cup Vars(t)\right]\right| \le k \le (c/2)|I' \setminus Cl^e(t)|$
- Case2. |I' \ CI^e(t)| ≤ 2c⁻¹k. Consider the minimal path in G_L that connects equations, corresponding to t with those corresponding to t₁ it goes along I'. Construct path of length 2|I' \ CI^e(t)| between t₁ and CI^e(t) in G(A).

Partial Assignments over Affine Subspaces

Lemma

Let $Y \subset X$ be a set of variables. Assume that b is a partial assignment on Y uniformly distributed on some affine subspace $A \subseteq \{0, 1\}^{Y}$. Then for any term t in Y variables either $Pr[t|_b \equiv 1] = 0$ or $Pr[t|_b \equiv 1] \ge 2^{-|t|}$.

Random Restriction

Definition

A DNF ϕ is in *normal form* w.r.t. *A*, *b* if each of its terms is locally consistent.

Definition

 $X = \{x_1, ..., x_n\}$ is the set of all variables. $D_{A,b}$ is a distribution over partial assignments over X that results from the experiment:

- Choose a random $X_1 \subset X$ of size cr/4
- $\hat{I} = Cl^e(X_1), \quad \hat{X} = X_1 \cup \{x_j | \exists i \in \hat{I} : A_{ij} = 1\}$
- Uniformly choose ρ from all $\hat{x} \in \{0, 1\}^{\hat{X}}$ satisfying $A_{\hat{i}}\hat{x} = b_{\hat{i}}$.

Restriction Lemma

Theorem

Assume that every column of A contains at most $\hat{\Delta}$ ones, b is arbitrary vector and $r = \Omega(n/\hat{\Delta})$. For any k-DNF ϕ in normal form holds:

$$Pr[\phi|_{
ho}
eq 1] < \left(1 - 2^{-k}\right)^{c(\phi)/\hat{\Delta}^{O(k)}}$$

Corollary

There exists an absolute constant D s.t. under the assumption of the theorem for any normal form k-DNF ϕ

$$Pr[\phi|_{
ho}
eq 1] < 2^{-c(\phi)/\hat{\Delta}^{Dk}}$$

Proof

Proof.

- Observe $\hat{x} \in \{0, 1\}^{\hat{X}}$ given by ρ .
- Assume that all bits of \hat{x} are hidden. Consider a term t_1 .
- Event E_1 denotes that t_1 is satisfied. Since t_1 is l.c. $Pr[E_1] \ge 2^{-k}$. If E_1 happens success, otherwise:
- Step *I*: *t*^(*I*) is a term corresponding to the partial assignment of revealed bits of *x̂*. |*t*^(*I*)| ≤ *Ik*

•
$$Y^{(l)} \subseteq \hat{X} : d_A(Y^{(l)}, Cl^e(t^{(l)})) \le 4c^{-1}k$$

• Term t_{l+1} free of these variables. If there is no – terminate, else reveal the corresponding bits.

•
$$Pr[E_{l+1}|t^{(l)}] \ge 2^{-k}$$

Digression

- There are at least $C_0 = c(\phi)/k$ variable disjoint terms.
- Each of them will be covered by X₁ with probability at least (cr/4n)^k.
- The expected number of covered variable disjoint terms is $C_0(cr/4n)^k$.
- By Chernoff bound we may assume that there exist $C_1 = C_0 / \hat{\Delta}^{O(k)}$ variable disjoint terms covered by X_1 .

Proof part 2

- T stopping time
- Case 1: $kT \le cr/4$ $Cl^{e}(t^{(T)}) \le 2c^{-1}Tk$
- Then $|Y^{(T)}| \le 2c^{-1}Tk\hat{\Delta}^{4c^{-1}k}$
- Since $Y^{(T)}$ is a hitting set for ϕ $C_1 \leq |Y^{(T)}|$ and $T \geq C_1 / \hat{\Delta}^{O(k)}$
- Case 2: T > cr/(4k). Because $r = \Omega(n/\hat{\Delta})$ and $c(\phi) \le n$ $T \ge c(\phi)/\hat{\Delta}^{O(k)}$

With high probability $A_{n,\Delta}$ is (r, 0.8)-boundary expander for some $r = \Omega(n)$.

Definition

For matrix $A_{n,\Delta}$ let J be a set of 0.2r columns of the largest hamming weight. $I' = CI^e(J)$, $J' = \bigcup_{i \in I'} A_i$. By $\hat{A}_{n,\Delta}$ we denote matrix $A_{n,\Delta}$ with columns J' and rows I' removed. Similarly define \hat{b} .

Lemma

 $\hat{A}_{n,\Delta}$ is (r/2, 0.4)-boundary expander in which every column has weight bounded by some $\hat{\Delta}$ that depends on Δ only.

Proof.

- We already proved that such matrix is either empty or (r/2, c/2)-boundary expander. It is not empty since |l'| < r/2.
- Our matrix contains at most 3Δn/(0.2r) ones in each column and r = Ω(n).

Lemma

Every $\operatorname{Res}(k)$ refutation of $\phi_{n,\Delta}$ can be transformed into $\operatorname{Res}(k)$ refutation of the system $\hat{A}_{n,\Delta}x = \hat{b}$ in which every line is in normal form with only polynomial increase of the size.

- Refutation of $\phi_{n,\Delta}$ also fits for the 3-CNF corresponding to $A_{n,\Delta}x = b$.
- We may assign values to $x_{J'}$ so that all the equations in $A_{l'}x = b_{l'}$ are satisfied. Then we get a Res(k) refutation of $\hat{A}_{n,\Delta}x = \hat{b}$. Now we should transform it into a normal form.
- For every term *t* that is not l.c. we may infer *t* from 2.5*k* axioms in polynomial size in *Resolution*. Thus we may substitute any occurrence of locally inconsistent terms with ⊥ with the polynomial increase of the size of proof.

Lemma(Ben-Sasson-Wigderson)

Assume that the matrix $\hat{A}_{n,\Delta}$ is (r, c)-boundary expander. Then every resolution refutation of the system $\hat{A}_{n,\Delta}x = \hat{b}$ requires width ϵr , where ϵ depends only on c.

Theorem

For any constant Δ with probability 1 - o(1) every $\operatorname{Res}(k)$ refutation of $\phi_{n,\Delta}$ for $k < \sqrt{\log n / \log \log n}$ has size $2^{n^{1-o(1)}}$.

Proof of the Lower Bound

- If there exists Res(k) refutation of $\phi_{n,\Delta}$ of size *S* then there exists Res(k) refutation *P* of the system $\hat{A}_{n,\Delta}x = \hat{b}$ of size $Sn^{O(1)}$ which is in normal form.
- Apply restriction $\rho_{\hat{A}_{n,\Delta},b}$ constructed in the previous section to the whole refutation *P*. Due to the Corollary of Restiction Lemma for each line *F* of *P* $Pr[F|_{\rho} \neq 1] < 2^{-c(F)/\hat{\Delta}^{Dk}}$.
- Applying Switching Lemma plugging in parameters $d = 1, \gamma = 1, \delta = (1/\hat{\Delta})^{Dk}, s = \epsilon r/(2k)$ we have that $Pr[h(F|_{\rho}) > \epsilon r/k] \le k2^{-\epsilon r(1/\hat{\Delta})^{2Dk^2}}$
- Converting Res(k) refutation to Resolution refutation we get that the restricted proof $P|_{\rho}$ has width less than ϵr with probability at least $1 Sk2^{-\epsilon r/k(1/\hat{\Delta})^{2Dk^2}} > 1 S2^{-n/2^{O(k^2)}}$.

The Very Last Step

Proof.

On the other hand it is still refutation of the system which matrix is (r/4, 0.2)-boundary expander, so according to Ben-Sasson–Wigderson lemma the probability of this event must be 0.

At last we have $S > 2^{n/2^{O(k^2)}}$ and the theorem follows.