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Resolution

Resolution Rule
A,B - clauses

A ∨ x ¬x ∨ B
A ∨ B

Definition

• The width ω(C) of a clause C is the number of literals in C.
• The width ω(τ) of a set of clauses τ (in particular the width

of a resolution proof) is the maximal width of the clauses
appearing in this set.

• The size of a resolution proof is the number of different
clauses in it.
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Resolution

Definition
Consider an unsatisfiable set of clauses τ . Denote by SR(τ) the
size of minimal refutation of τ . Denote by ωR(τ) the minimal
refutation width over all possible proofs of τ .

Weakening
We will extend Resolution with weakening inferences:

A,B-clauses. If A ⊆ B, then
A
B

.
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What is Res(k )?

k -DNF Resolution (Res(k)) is a generalization of Resolution
that operates with k -DNFs instead of clauses.

Res(k ) Inference Rules
A, B are k -DNFs, 1 ≤ j ≤ k and l , l1, . . . , lj are literals

• Weakening:
A

A ∨ l

• Cut:
A ∨

∧j
i=1 li B ∨

∨j
i=1 ¬li

A ∨ B

• AND-introduction:
A ∨ l1 . . .A ∨ lj

A ∨
∧j

i=1 li

• AND-elimination:
A ∨

∧j
i=1 li

A ∨ li

Remark: Resolution = Res(1).
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Strong Soundness

Important property: Res(k) is strongly sound.
If k -DNF F is inferred from k -DNFs F1, . . . ,Fj , and t1, . . . , tj are
mutually consistent terms of F1, . . . ,Fj respectively, then there
is a term t of F implied by

∧j
i=1 ti .
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Related Definitions

Definition
Res(k) refutation of unsatisfiable CNF τ is the inference of the
empty clause from the clauses in τ using inference rules.

Definition
The size of Res(k) refutation is the number of lines it contains.

Definition
SR(k)(τ) denotes the minimal size of a Res(k) refutation of
CNF τ .
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Res(k) vs Res(k + 1)

Fact:
Res(k + 1) is exponentially more powerful than Res(k).
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Decision Tree

Definition
Decision tree:
• Rooted binary tree.
• Every internal node labeled with variable.
• Edges leaving node correspond to whether the variable is

set to 0 or 1.
• Leaves are labeled with either 0 or 1.

Remark: Every path from the root to a leaf may be viewed as
a partial assignment.
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Related Definitions

υ ∈ {0,1}, decision tree T , DNF F

Definition
Brυ(T ) denotes the set of paths that lead from the root to a leaf
labeled υ.

Definition
T strongly represents F if for every π ∈ Br0(T ), for all
t ∈ F , t |π = 0 and for every π ∈ Br1(T ) there exists
t ∈ F , t |π = 1.

Definition
Representation height of F , h(F ), is the minimal height of a
decision tree strongly representing F .
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Switching Lemma

Definition
DNF F , set of variables S.
If every term of F contains a variable from S, then S is a cover
of F . The covering number of F , c(F ), is the minimal
cardinality of a cover of F .

Switching Lemma
Let k ≥ 1, let s0, . . . , sk−1 and p1, . . . ,pk be sequences of
positive numbers, and let D be a distribution on partial
assignments so that for every i ≤ k and every i-DNF G, if
c(G) > si−1, then Prρ∈D [G|ρ 6= 1] ≤ pi . Then for every k -DNF
F :

Prρ∈D

[
h(F |ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

2(
Pk−1

j=i sj )pi
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Proof of Switching Lemma
Proof.

• Induction on k .
• k = 1: If c(F ) ≤ s0 then at most s0 variables appear in F .

If c(F ) > s0 then Pr(h(F |ρ) 6= 0) ≤ Prρ∈D [F |ρ 6= 1] ≤ p1

• k → k + 1 : (k + 1)-DNF F .
• If c(F ) > sk then Pr(h(F |ρ) 6= 0) ≤ Prρ∈D [F |ρ 6= 1] ≤ pk+1

• Consider c(F ) ≤ sk . S is a cover of size at most sk .
π–assignment to the variables in S. F |π is a k-DNF.
Prρ∈D

[
∃π ∈ {0,1}S : h((F |ρ)|π) >

∑k−1
i=0 si

]
≤

2sk (
∑k

i=1 2(
Pk−1

j=i sj )pi) <
∑k+1

i=1 2(
Pk

j=i sj )pi

• If ∀π ∈ {0,1}S h((F |ρ)|π) ≤
∑k−1

i=0 si then we may construct
a decision tree of height at most

∑k
j=i sj strongly

representing F |ρ.
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One More Switching Lemma

Corollary
k , s,d are positive integers, γ, δ ∈ (0,1]. D is a distribution on
partial assignments s.t. ∀ k-DNF G Prρ∈D [G|ρ 6= 1] ≤
d2−δ(c(G))γ . For every k-DNF F :

Prρ∈D [h(F |ρ) > 2s] ≤ dk2−δ
′sγ
′

where δ′ = 2(δ/4)k and γ′ = γk .
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Proof of the Corollary

Proof.

• si = (δ/4)isγ
i
, pi = d2−4si .

• si−1/4 ≥ (δ/4)si−1 = (δ/4)isγ
i−1 ≥ si . So∑k

j=i sj ≤
∑

j≥i si/4j−i ≤ 2si

• For any i-DNF G with c(G) ≥ si−1 Prρ∈D [G|ρ 6= 1] ≤
d2−δ(c(G))γ ≤ d2−δs

γ
i−1 = 2−δ(δ/4)i−1(sγ

i−1
)γ = d2−4si

• After applying previous theorem we have that:
For every k -DNF F Prρ∈D [h(F |ρ) > 2s] ≤
Prρ∈D

[
h(F |ρ) >

∑k−1
i=0 si

]
≤
∑k

i=1 2(
Pk−1

j=i sj )pi ≤∑k
i=1 22si (d2−4si ) ≤ dk2−2sk = dk2−δ

′sγ
′
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Res(k)→ Resolution

Theorem
Let τ be a set of clauses s.t. ω(τ) ≤ h. If τ has a Res(k)
refutation s.t. for each line F of the refutation h(F ) ≤ h, then
ωR(τ) ≤ kh.

Proof:

• TC is a decision tree for C ∈ τ . For any line F TF is a min
height tree for F . For any partial assignment π Cπ is a
clause that contains negations of every literal in π.

• For π ∈ Br0(T∅),Cπ = ∅ and for each C ∈ τ for the unique
π ∈ Br0(TC),Cπ = C. We construct narrow resolution
refutation by deriving Cπ for each line F and each
π ∈ Br0(TF ).
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Proof part 2

Proof.

• Consider F inferred from previously derived F1, . . . ,Fj ,
j ≤ k . We construct a decision tree T of height ≤ kh that
represents

∧j
i=1 Fi .

• The set {Cσ|σ ∈ Br0(T )} can be derived using the
weakening rule.

• For every σ ∈ Br1(T ) there exists t ∈ F satisfied by σ.
• Let π ∈ Br0(TF ) be given. For all σ ∈ Br(T ) consistent with
π σ ∈ Br0(T ).

• For each node ν in T σν is the path from the root to ν.
From the leaves to the root , we derive Cσν ∨ Cπ for each ν
so that σν is consistent with π. When we reach the root we
will have derived Cπ.
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Random 3-CNF’s and Linear Systems

Definition
Denote by φn,∆n the random 3− CNF with ∆n clauses and n
variables, in which every clause is chosen independently from
the set of all 23C3

n clauses.

Definition
For each φn,∆ we consider a ∆n × n matrix An,∆n and a vector
b ∈ {0,1}∆n s.t.:
• An,∆n [i , j] = 1 iff the i-th clause of φn,∆ contains the

variable xj .
• b [i] = (number of positive variables in the i-th clause)

mod 2.

Remark: Each clause of φn,∆n is a semantical corollary of
some linear equation of the system An,∆nx = b
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Expanders

A ∈ {0,1}m×n, I ⊆ [m], Ai -i th row of A.

Definition
Boundary of I, ∂I, is a set of all j ∈ [n] s.t. ∃! i ∈ I : j ∈ Ai

Definition
A is an (r , c)-boundary expander if

∀I ⊆ [m] (|I| ≤ r ⇒ |∂I| ≥ c|I|)

Fact:
∀∆ > 0, c < 1 ∃δ s.t. with probability 1− o(1) An,∆n is
(δn, c)-boundary expander.
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Cl

A ∈ {0,1}m×n, J ⊆ [n], I, I1 ⊆ [m]

I `J I1 ⇐⇒ |I1| ≤ r/2 ∧ ∂(I1) ⊆

[⋃
i∈I

Ai ∪ J

]

Definition
Closure J, Cl(J), is a set of all rows which can be inferred from
the empty set.

Lemma
If |J| ≤ cr/2 then |Cl(J)| ≤ c−1|J|
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Proof

Proof.

• {Ik} s.t. I1 ∪ · · · ∪ Iν−1 `J Iν .
• Consider the smallest k s.t. |

⋃k
ν=1 Iν | > c−1|J|

• Since |J| ≤ cr/2 |
⋃k
ν=1 Iν | ≤ r and since we are dealing

with expander |∂(
⋃k
ν=1 Iν)| > c(c−1|J|) = |J|

• But ∂(
⋃k
ν=1 Iν) ⊆ J
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Cle

A ∈ {0,1}m×n, J ⊆ [n], I, I1 ⊆ [m]

I `e
J I1 ⇐⇒ |I1| ≤ r/2 ∧

∣∣∣∣∣∂(I1) \

[⋃
i∈I

Ai ∪ J

]∣∣∣∣∣ < (c/2)|I1|

Algorithm Cle(J)

I := ∅ R := [m]
while (there exists I1 ∈ R s.t. I `e

J I1)
I := I ∪ I1
R := R \ I1
end
output I;

Lemma
If |J| < cr/4 then |Cle(J)| < 2c−1|J|
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Proof

Proof.

• Consider the sequence I1 . . . Il appearing in the cleaning
procedure. These sets are pairwise disjoint.

• Ct :=
⋃t

k=1 Ik . By T denote the first t : |Ct | > 2c−1|J|
• Since |J| < cr/4 |CT | ≤ r
• Due to expansion |∂CT | > c|CT |, so
|∂CT \ J| > c|CT | − |J| ≥ c|CT |/2

• But |∂CT \ J| ≤ c/2
∑T

k=1 |Ik | = c/2|CT |
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A little more about Cle

A ∈ {0,1}m×n, J ⊆ [n]
I′ = Cle(J), J ′ =

⋃
i∈I′ Ai .

Lemma
Obtain Â by removing the rows corresponding to I′ and columns
to J ′. Â is either empty or (r/2, c/2)-boundary expander.

Proof.

• Consider I ∈ Â : |I| ≤ r/2. ∂AI ⊆ ∂ÂI ∪ J ∪ J ′

• If |∂ÂI| < (c/2)|I| then |∂AI \ (J ′ ∪ J)| < (c/2)|I| and I′ `e
J I.
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Local Consistence

For a term t Cl(t) := Cl(Vars(t)) and Cle(t) := Cle(Vars(t))
A ∈ {0,1}m×n, b ∈ {0,1}m

Definition
Term t is locally consistent w.r.t. Ax = b if the formula
t ∧ [AIx = bI ] is satisfiable, where I = Cl(t).

Lemma
If t is locally consistent then ∀I ⊆ [m] : |I| < r/2 the formula
t ∧ [AIx = bI ] is satisfiable.

Proof.
If not then ∃t ′ ∈ t , I′ ∈ I s.t.

∑
i∈I′(Aix − bi) +

∑
xεj ∈t ′ (xj − ε) ≡ 1

Then ∂(I′) ∈ Vars(t ′), hence I′ ∈ Cl(t) and t is inconsistent.
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A ∈ {0,1}m×n

Definition
G(A) is the bipartite graph between m row vertices and n
column vertices with incidence matrix A. dA(V1,V2) denotes
the shortest path between sets V1,V2 in G(A)

Lemma
A is an expander. I ∈ [m] : |I| < r/2. Term t : t ∧ [AIx = bI ] is
satisfiable. Then:
∀ l.c. term t1 with |t1| ≤ k s.t. dA(Cle(t), t1) > 4c−1k
the formula t1 ∧ t ∧ [AIx = bI ] is also satisfiable.
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Proof.

• If not then ∃t ′ ∈ t , t ′1 ∈ t1, I′ ∈ I s.t.∑
i∈I′(Aix − bi) +

∑
xεj ∈t ′ (xj − ε) +

∑
xεl ∈t ′1

(xl − ε) ≡ 1

• We consider such L = (I, t ′, t ′1) with minimal number of
equations. GL is connected.

• ∂(I′) ⊆ Vars(t ′) ∪ Vars(t ′1). t , t1 are both consistent with
AIx = bI , so t , t1 are both non-empty.

• Case1. |I′ \ Cle(t)| > 2c−1k∣∣∣∂(I′) \
[⋃

i∈Cle(t) Ai ∪ Vars(t)
]∣∣∣ ≤ k ≤ (c/2)|I′ \ Cle(t)|

• Case2. |I′ \ Cle(t)| ≤ 2c−1k . Consider the minimal path in
GL that connects equations, corresponding to t with those
corresponding to t1 it goes along I′. Construct path of
length 2|I′ \ Cle(t)| between t1 and Cle(t) in G(A).
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Partial Assignments over Affine Subspaces

Lemma
Let Y ⊂ X be a set of variables. Assume that b is a partial
assignment on Y uniformly distributed on some affine
subspace A ⊆ {0,1}Y . Then for any term t in Y variables either
Pr [t |b ≡ 1] = 0 or Pr [t |b ≡ 1] ≥ 2−|t |.
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Random Restriction

Definition
A DNF φ is in normal form w.r.t. A,b if each of its terms is
locally consistent.

Definition
X = {x1, . . . , xn} is the set of all variables. DA,b is a distribution
over partial assignments over X that results from the
experiment:
• Choose a random X1 ⊂ X of size cr/4
• Î = Cle(X1), X̂ = X1 ∪ {xj |∃i ∈ Î : Aij = 1}

• Uniformly choose ρ from all x̂ ∈ {0,1}X̂ satisfying AÎ x̂ = bÎ .
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Restriction Lemma

Theorem
Assume that every column of A contains at most ∆̂ ones, b is
arbitrary vector and r = Ω(n/∆̂). For any k-DNF φ in normal
form holds:

Pr [φ|ρ 6= 1] <
(

1− 2−k
)c(φ)/∆̂O(k)

Corollary
There exists an absolute constant D s.t. under the assumption
of the theorem for any normal form k-DNF φ

Pr [φ|ρ 6= 1] < 2−c(φ)/∆̂Dk
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Proof

Proof.

• Observe x̂ ∈ {0,1}X̂ given by ρ.
• Assume that all bits of x̂ are hidden. Consider a term t1.
• Event E1 denotes that t1 is satisfied. Since t1 is l.c.

Pr [E1] ≥ 2−k . If E1 happens – success, otherwise:
• Step l : t(l) is a term corresponding to the partial

assignment of revealed bits of x̂ . |t(l)| ≤ lk
• Y (l) ⊆ X̂ : dA(Y (l),Cle(t(l))) ≤ 4c−1k
• Term tl+1 free of these variables. If there is no – terminate,

else reveal the corresponding bits.
• Pr [El+1|t(l)] ≥ 2−k
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Digression

• There are at least C0 = c(φ)/k variable disjoint terms.
• Each of them will be covered by X1 with probability at least

(cr/4n)k .
• The expected number of covered variable disjoint terms is

C0(cr/4n)k .
• By Chernoff bound we may assume that there exist

C1 = C0/∆̂O(k) variable disjoint terms covered by X1.
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Proof part 2

Proof.

• T – stopping time
• Case 1: kT ≤ cr/4 Cle(t(T )) ≤ 2c−1Tk

• Then |Y (T )| ≤ 2c−1Tk∆̂4c−1k

• Since Y (T ) is a hitting set for φ C1 ≤ |Y (T )| and
T ≥ C1/∆̂O(k)

• Case 2: T > cr/(4k). Because r = Ω(n/∆̂) and c(φ) ≤ n
T ≥ c(φ)/∆̂O(k)
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With high probability An,∆ is (r ,0.8)-boundary expander for
some r = Ω(n).

Definition
For matrix An,∆ let J be a set of 0.2r columns of the largest
hamming weight. I′ = Cle(J), J ′ =

⋃
i∈I′ Ai . By Ân,∆ we denote

matrix An,∆ with columns J ′ and rows I′ removed. Similarly
define b̂.

Lemma
Ân,∆ is (r/2,0.4)-boundary expander in which every column
has weight bounded by some ∆̂ that depends on ∆ only.
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Proof.

• We already proved that such matrix is either empty or
(r/2, c/2)-boundary expander. It is not empty since
|I′| < r/2.

• Our matrix contains at most 3∆n/(0.2r) ones in each
column and r = Ω(n).

Lemma
Every Res(k) refutation of φn,∆ can be transformed into Res(k)

refutation of the system Ân,∆x = b̂ in which every line is in
normal form with only polynomial increase of the size.
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Proof.

• Refutation of φn,∆ also fits for the 3-CNF corresponding to
An,∆x = b.

• We may assign values to xJ′ so that all the equations in
AI′x = bI′ are satisfied. Then we get a Res(k) refutation of
Ân,∆x = b̂. Now we should transform it into a normal form.

• For every term t that is not l.c. we may infer t̄ from 2.5k
axioms in polynomial size in Resolution. Thus we may
substitute any occurrence of locally inconsistent terms with
⊥ with the polynomial increase of the size of proof.
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Lemma(Ben-Sasson–Wigderson)
Assume that the matrix Ân,∆ is (r , c)-boundary expander. Then
every resolution refutation of the system Ân,∆x = b̂ requires
width εr , where ε depends only on c.

Theorem
For any constant ∆ with probability 1− o(1) every Res(k)

refutation of φn,∆ for k <
√

log n/ log log n has size 2n1−o(1)
.
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Proof of the Lower Bound
Proof.

• If there exists Res(k) refutation of φn,∆ of size S then there
exists Res(k) refutation P of the system Ân,∆x = b̂ of size
SnO(1) which is in normal form.

• Apply restriction ρÂn,∆,b
constructed in the previous section

to the whole refutation P. Due to the Corollary of Restiction
Lemma for each line F of P Pr [F |ρ 6= 1] < 2−c(F )/∆̂Dk

.
• Applying Switching Lemma plugging in parameters

d = 1, γ = 1, δ = (1/∆̂)Dk , s = εr/(2k) we have that

Pr [h(F |ρ) > εr/k ] ≤ k2−εr(1/∆̂)2Dk2

• Converting Res(k) refutation to Resolution refutation we
get that the restricted proof P|ρ has width less than εr with

probability at least 1− Sk2−εr/k(1/∆̂)2Dk2

> 1− S2−n/2O(k2)
.
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The Very Last Step

Proof.
On the other hand it is still refutation of the system which matrix
is (r/4,0.2)-boundary expander, so according to
Ben-Sasson–Wigderson lemma the probability of this event
must be 0.
At last we have S > 2n/2O(k2)

and the theorem follows.
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