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Abstract

In this talk we proved exponential lower bounds for the refutation of a random 3-CNF with
linear number of clauses by k-DNF Resolution for k ≤

√
log n/ log log n. This result was

achieved by M. Alekhnovich. For this he introduced a specially tailored random restrictions
that preserve the structure of the input random 3-CNF while mapping every k-DNF with
large covering number to 1 with high probability. Next he made use of the switching lemma
for small restrictions by Segerlind, Buss and Impagliazzo [1] to prove the lower bound.

The main part of this talk is based on [2].

1 Introduction

Random 3-CNFs are an interesting candidate for proving lower bounds for propositional
proof systems. No short refutations of these formulas are known even for strong systems as
Frege or Extended Frege. While there is little hope to prove lower bounds for such strong
systems at the moment, one of more feasible goals is to prove combinatorially the hardness
of refuting a random 3-CNF for those proof systems for which lower bounds are known.

Here we investigate the complexity of random 3-CNFs for Res(k) systems. k-DNF
Resolution is a generalized variant of Resolution which operates with k-DNFs instead of
clauses. This is an interesting intermediate system between Resolution and depth two
Frege. It was shown by Segerlind, Buss and Impagliazzo [1] that random O(k2)-CNFs are
hard for Res(k) for k ≤

√
log n/ log log n. As one of the open questions they asked whether

this bound may be improved for random 3-CNF. A positive answer to this question was
given by M. Alekhnovich [2]. He proved that random 3-CNFs are hard for Res(k) for the
same range of k.

2 Preliminaries

2.1 Resolution and k-DNF Resolution

Resolution is a simple propositional proof system that operates with clauses and has one
rule of inference called resolution rule:

A ∨ x ¬x ∨B
A ∨B

A resolution refutation of a CNF formula τ is a resolution proof of the empty clause from
the clauses appearing in τ . The size of a resolution proof is the number of different clauses
in it. The width ω(C) of a clause C is the number of literals in C. The width ω(τ) of a
set of clauses τ (in particular, the width of a resolution proof) is the maximal width of the
clauses appearing in this set. For an unsatisfiable set of clauses τ denote by SR(τ) the size
of minimal refutation in Resolution. Denote by ωR(τ) the minimal refutation width over
all possible proofs of τ .



We will extend Resolution with weakening inferences: A,B-clauses. If A ⊆ B, then
A

B
.

k-DNF Resolution (or Res(k)) is a generalization of Resolution that operates with k-
DNFs and has the following inference rules:

A, B are k-DNFs, 1 ≤ j ≤ k and l, l1, . . . , lj are literals

• Weakening:
A

A ∨ l

• Cut:
A ∨

∧j
i=1 li B ∨

∨j
i=1 ¬li

A ∨B

• AND-introduction:
A ∨ l1 . . . A ∨ lj
A ∨

∧j
i=1 li

• AND-elimination:
A ∨

∧j
i=1 li

A ∨ li
Res(k) refutation of unsatisfiable CNF τ is the inference of the empty clause from the

clauses in τ using the rules 1-4. Similarly to Resolution, define the size of Res(k) refutation
as the number of lines it contains. SR(k)(τ) is the size of the smallest Res(k) refutation of
CNF τ .

Important property: Res(k) is strongly sound.
In our case it means that if k-DNF F is inferred from k-DNFs F1, . . . , Fj, and t1, . . . , tj are
mutually consistent terms of F1, . . . , Fj respectively, then there is a term t of F implied by∧j
i=1 ti. In other words any reason why F1, . . . , Fj are true implies a reason why F is true.

2.2 Decision Trees

Definition 1. A decision tree is a rooted binary tree such that every internal node is labeled
with a variable, the edges leaving this node correspond to whether the variable is set to 0
or 1, and the leaves are labeled with either 0 or 1. Every path from the root to a leaf may
be viewed as a partial assignment. For a decision tree T and υ ∈ {0, 1}, we write the set
of paths that lead from the root to a leaf labeled υ as Brυ(T ). We say that a decision tree
T strongly represents a DNF F if for every π ∈ Br0(T ) and for all t ∈ F, t|π = 0 and for
every π ∈ Br1(T ) there exists t ∈ F , such that t|π = 1. Let the representation height of
F , h(F ) be the minimum height of a decision tree strongly representing F .

Notice that the function computed by a decision tree of height h can be computed both
by an h-CNF and by an h-DNF.

Definition 2. Let F be a DNF and let S be a set of variables. If every term of F contains
a variable from S then we say that S is a cover of F . The covering number of F , c(F ) is
the minimum cardinality of a cover of F .



2.3 Switching Lemma

The following results in were proved in [SBI02].

Theorem 1. (Switching Lemma)
Let k ≥ 1, let s0, . . . , sk−1 and p1, . . . , pk be sequences of positive numbers, and let D be
a distribution on partial assignments so that for every i ≤ k and every i-DNF G, if
c(G) > si−1, then Prρ∈D [G|ρ 6= 1] ≤ pi. Then for every k-DNF F :

Pr
ρ∈D

[
h(F |ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

2(
Pk−1
j=i sj)pi

Proof. Proceed by induction on k. First consider k = 1: If c(F ) ≤ s0 then at most
s0 variables appear in F . We can construct a height ≤ s0 decision tree that strongly
represents F |ρ by querying all of the variables in F |ρ. If c(F ) > s0 then Pr(h(F |ρ) 6= 0) ≤
Prρ∈D [F |ρ 6= 1] ≤ p1.

Induction step. k → k + 1 Consider (k + 1)-DNF F .

If c(F ) > sk then Pr(h(F |ρ) 6= 0) ≤ Prρ∈D [F |ρ 6= 1] ≤ pk+1 ≤
∑k+1

i=1 2
Pk
j=i sjpi

Consider c(F ) ≤ sk. Let S be a cover of size at most sk. π–assignment to the
variables in S. Because each term of F contains at least one variable from S, F |π
is a k-DNF. By combining the induction hypothesis with the union bound we achieve

Prρ∈D

[
∃π ∈ {0, 1}S : h((F |ρ)|π) >

∑k−1
i=0 si

]
≤ 2sk(

∑k
i=1 2(

Pk−1
j=i sj)pi) <

∑k+1
i=1 2(

Pk
j=i sj)pi

In the event that ∀π ∈ {0, 1}S h((F |ρ)|π) ≤
∑k−1

i=0 si we may easily construct a decision

tree of height at most
∑k

j=i sj strongly representing F |ρ. (more formal proof can be found
in [SBI02])

Corollary 1. (One more Switching Lemma)
k, s, d are positive integers, γ, δ ∈ (0, 1]. D is a distribution on partial assignments s.t. ∀
k-DNF G Prρ∈D [G|ρ 6= 1] ≤ d2−δ(c(G))γ . For every k-DNF F:

Pr
ρ∈D

[h(F |ρ) > 2s] ≤ dk2−δ
′sγ
′

where δ′ = 2(δ/4)k and γ′ = γk.

Proof. Let si = (δ/4)isγ
i

and pi = d2−4si . Note that si−1/4 ≥ (δ/4)si−1 = (δ/4)isγ
i−1 ≥ si.

It follows that
∑k

j=i sj ≤
∑

j≥i si/4
j−i ≤ 2si.

Also for any i-DNF G with c(G) ≥ si−1

Pr
ρ∈D

[G|ρ 6= 1] ≤ d2−δ(c(G))γ ≤ d2−δs
γ
i−1 = 2−δ(δ/4)i−1(sγ

i−1
)γ = d2−4si

After applying previous theorem we have that for every k-DNF F

Prρ∈D [h(F |ρ) > 2s] ≤ Prρ∈D

[
h(F |ρ) >

∑k−1
i=0 si

]
≤
∑k

i=1 2(
Pk−1
j=i sj)pi ≤

∑k
i=1 22si(d2−4si) ≤

dk2−2sk = dk2−δ
′sγ
′



2.4 Decision Trees and Res(k) Refutations

The following result also can be found in [SBI02].

Theorem 2. Let τ be a set of clauses s.t. ω(τ) ≤ h. If τ has a Res(k) refutation s.t. for
each line F of the refutation h(F ) ≤ h, then ωR(τ) ≤ kh.

Proof. For each clause C ∈ τ , TC is a decision tree for C. For any line F of Res(k)
refutation that is not a hypothesis let TF be a decision tree of minimum height that
strongly represents F . For any partial assignment π, Cπ is a clause that contains negations
of every literal in π. Notice that for π ∈ Br0(T∅), Cπ = ∅ and for each C ∈ τ for the unique
π ∈ Br0(TC), Cπ = C. We construct narrow resolution refutation by deriving Cπ for each
line F and each π ∈ Br0(TF ).

Consider F inferred from previously derived F1, . . . , Fj, j ≤ k. We construct a decision
tree T of height ≤ kh that represents

∧j
i=1 Fi.

The set {Cσ|σ ∈ Br0(T )} can be derived using the weakening rule.
Because of the strong soundness of Res(k) for every σ ∈ Br1(T ) one can find term

t ∈ F satisfied by σ.
Let π ∈ Br0(TF ) be given. Because TF strongly represents F , π falsifies all terms of F .

For all σ ∈ Br(T ) if σ consistent with π, then σ ∈ Br0(T ) (otherwise, π would not falsify
the term of F satisfied by σ).

For each node ν in T , let σν be the path from the root to ν (viewed as partial as-
signment). Bottom-up, from the leaves to the root, we recursively derive (in resolution)
Cσν ∨ Cπ, for each ν such that σν is consistent with π. When we reach the root we will
have derived Cπ. (more formal proof can be found in [SBI02])

2.5 Random 3-CNFs and Linear Systems

Definition 3. Denote by φn,∆n the random 3−CNF with ∆n clauses and n variables, in
which every clause is chosen independently from the set of all 23C3

n clauses.

Definition 4. For each φn,∆ we consider a ∆n×n matrix An,∆n and a vector b ∈ {0, 1}∆n

s.t.:

• An,∆n [i, j] = 1 iff the i-th clause of φn,∆ contains the variable xj.

• b [i] = (number of positive variables in the i-th clause) mod 2.

Remark: Each clause of φn,∆n is a semantical corollary of some linear equation of the
system An,∆nx = b

Instead of proving a lower bound on the size of the refutation of φn,∆ we will prove a
stronger bound on the refutation of the system An,∆n = b. Note that An,∆n is a random
matrix in which each row contain 3 ones.



3 Expanders

3.1 Basic Definitions

A boundary expander is a bounded-degree graph that has many neighbors for every subset
of its nodes. We use a more general notion of expander as an m× n matrix.
A ∈ {0, 1}m×n
We denote the i-th row of A by Ai and identify it with the set {j|Aij = 1}

Definition 5. For a set of rows I ⊆ [m] of m× n matrix A, we define its boundary, ∂AI
(or just ∂I), as a set of all j ∈ [n] (called boundary elements) s.t. there exists exactly one
row i ∈ I that contains j.

Definition 6. We say that A is an (r, c)-boundary expander if

∀I ⊆ [m] (|I| ≤ r ⇒ |∂I| ≥ c|I|)

Fact: ∀∆ > 0, c < 1 ∃δ s.t. with probability 1 − o(1) An,∆n is (δn, c)-boundary
expander.

3.2 Various closures of a set of columns

We make use of two different operations of taking closures.

Definition 7. A ∈ {0, 1}m×n For a set of columns J ⊆ [n] define the following inference
relation `J on the set [m] of rows of A:

I `J I1 ⇐⇒ |I1| ≤ r/2 ∧ ∂(I1) ⊆

[⋃
i∈I

Ai ∪ J

]

Let the closure Cl(J) of J be a set of all rows which can be inferred via `J from the empty
set.

Lemma 1. If |J | ≤ cr/2 then |Cl(J)| ≤ c−1|J |

Proof. Assume the controrary and choose a chain of subsets I1, I2, . . . such that I1 ∪ · · · ∪
Iν−1 `J Iν and |∪ν Iν | > c−1|J |. Consider the smallest k s.t. |

⋃k
ν=1 Iν | > c−1|J | Since |J | ≤

cr/2 |
⋃k
ν=1 Iν | ≤ r and since we are dealing with expander |∂(

⋃k
ν=1 Iν)| > c(c−1|J |) = |J |.

On the other hand every new boundary element that results from appending via `J some
set of rows must belong to J , therefore ∂(

⋃k
ν=1 Iν) ⊆ J

We also need another closure operation the intuitive sense of which is to extract a good
expander out of a given matrix by removing rows and columns.



Definition 8. A ∈ {0, 1}m×n For a set of columns J ⊆ [n] we define the following
inference relation `eJ on the set [m] of rows of A:

I `eJ I1 ⇐⇒ |I1| ≤ r/2 ∧

∣∣∣∣∣∂(I1) \

[⋃
i∈I

Ai ∪ J

]∣∣∣∣∣ < (c/2)|I1|

By Cle(J) we denote the result achieved in the following algorithm:
Algorithm Cle(J)
I := ∅
R := [m]
while (there exists I1 ∈ R s.t. I `eJ I1)
/*cleaning step*/
I := I ∪ I1

R := R \ I1

end
output I;

Lemma 2. If |J | < cr/4 then |Cle(J)| < 2c−1|J | no matter in what order have cleaning
steps taken place.

Proof. Assume the controrary and consider the sequence I1 . . . It appearing in the cleaning
procedure. These sets are pairwise disjoint. Ct :=

⋃t
k=1 Ik. By T denote the first t :

|Ct| > 2c−1|J | Since |J | < cr/4 |CT | ≤ r Due to expansion |∂CT | > c|CT |, which implies

|∂CT \ J | > c|CT | − |J | ≥ c|CT |/2

On the other hand, every time we add some It+1 to Ct during the cleaning procedure, only
(c/2)|It+1| new elements can be added to ∂Ct \ J (of those elements that have never been
there before). This implies

|∂CT \ J | ≤ c/2
T∑
k=1

|Ik| = c/2|CT |

Lemma 3. A ∈ {0, 1}m×n, J ⊆ [n]
I ′ = Cle(J), J ′ =

⋃
i∈I′ Ai.

Obtain Â by removing the rows corresponding to I ′ and columns to J ′. Â is either empty
or (r/2, c/2)-boundary expander.

Proof. Consider a set of rows I in Â such that |I| ≤ r/2.
It is easy to understand that ∂AI ⊆ ∂ÂI ∪ J ∪ J ′. Therefore if |∂ÂI| < (c/2)|I| then
|∂AI \ (J ′ ∪ J)| < (c/2)|I| and I ′ `eJ I.



4 Random Restriction Lemma

In this section we define the special random restrictions and prove the main technical result
(Random Restriction Lemma) that will be used in the next section to lower bound the size
of Res(k) refutation.

For a term t we will wite Cl(t) and Cle(t) for Cl(Vars(t)) and Cle(Vars(t)) respectively.

Definition 9. A ∈ {0, 1}m×n, b ∈ {0, 1}m, a term t is locally consistent w.r.t. Ax = b iff
the formula

t ∧ [AIx = bI ]

is satisfiable, where I = Cl(t).

Lemma 4. If term t is locally consistent then for any set of rows I with |I| < r/2 the
formula

t ∧ [AIx = bI ]

is satisfiable.

Proof. Let us regard the conjunction of literals in t as a conjunction of linear equations
(having one variable each). Assume for the contradiction that linear equations correspond-
ing to t and AIx|bI are inconsistent. From the basic linear algebra this implies the existence
of two sets t′ ⊆ t, and I ′ ⊆ I s.t.∑

i∈I′
(Aix− bi) +

∑
xεj∈t′

(xj − ε) ≡ 1

Then ∂(I ′) ∈ V ars(t′), hence I ′ ∈ Cl(t). This however contradicts to the fact that t is
locally consistent.

Definition 10. For A ∈ {0, 1}m×n let G(A) be the corresponding bipartite graph between
m row vertices and n column vertices with incidence matrix A. For two vertices v1, v2 each
of which is either a colrmn or a row, the distance dA(v1, v2) is the length of the shortest
path between them.
For two subsets V1, V2 ⊆ [m] t [n] we let

dA(V1, V2) = min
v1∈V1,v2∈V2

dA(v1, v2).

Lemma 5. Let A be (r, c)-boundary expander. Assume that I is a set of rows of A,
|I| < r/2 and term t is a term such that the formula

t ∧ [AIx = bI ]

is satisfiable. Then for any locally consistent term t1 with |t1| ≤ k s.t.

dA(Cle(t), t1) > 4c−1k

the formula t1 ∧ t ∧ [AIx = bI ] is also satisfiable.



Proof. Let us regard the conjunction of literals in t, t1 as a conjunction of linear equations
(having one variable each). Assume for the contradiction that linear equations correspond-
ing to t, t1 and AIx|bI are inconsistent. As in the proof of the previous lemma this implies
the existence of three sets t′ ⊆ t, t′1 ⊆ t1 and I ′ ⊆ I s.t.∑

i∈I′
(Aix− bi) +

∑
xεj∈t′

(xj − ε) +
∑
xεl∈t

′
1

(xl − ε) ≡ 1

Definition 11. Assume that L contains linear equations of Ax = b and literals. Denote
by GL the induced subgraph of G(A) that contains the corresponding row vertex for each
linear equation in L and the corresponding column vertex for each variable contained in L
(either in literals or in equations).

Let us consider a subcombination L = (I, t′, t′1) of the sum above with the minimal
number of equations that sum up to one. In this case the graph GL is connected (otherwise
one may split the equations in our sum into two smaller sets corresponding to the connected
components inGL which both sum up to a constant, this would contradict to the minimality
condition).

It follows from the equation above that ∂A(I ′) ⊆ V ars(t′)∪V ars(t′1). By the assumption
in the statement t is consistent with AIx = bI , by the previous lemma t1 is also consistent
with AIx = bI . Thus, the equation above can hold only when t, t1 are both non-empty.
Note that ∂(I ′)\Vars(t) ⊆ Vars(t1).

Case 1. |I ′ \ Cle(t)| > 2c−1k In this case∣∣∣∣∣∣∂(I ′) \

 ⋃
i∈Cle(t)

Ai ∪ V ars(t)

∣∣∣∣∣∣ ≤ k ≤ (c/2)|I ′ \ Cle(t)|

thus Cle(t) is not closed since we may add I ′ \ Cle(t).
Case 2. |I ′ \ Cle(t)| ≤ 2c−1k. Consider the minimal path in GL that connects

equations corresponding to t with those corresponding to t1, this path goes along the
equations in I ′. Given this path one may construct a path of length 2|I ′ \ Cle(t)| that
connects Cle(t) with t1 in G(A). This however contradicts to the assumption of the lemma.

We will need one more lemma which proof can be found in [A05].

Lemma 6. Let Y ⊂ X be a set of variables. Assume that b is a partial assignment on
Y uniformly distributed on some affine subspace A ⊆ {0, 1}Y . Then for any term t in Y
variables either Pr[t|b ≡ 1] = 0 or Pr[t|b ≡ 1] ≥ 2−|t|.

Now it is time to introduce our special random restrictions and prove the main result
of this section.



Definition 12. Let A ∈ {0, 1}m×n be (r, c)-boundary expander and b ∈ {0, 1}m, let X =
{x1, . . . , xn} be the set of all variables. Denote by ρA,b a random restriction on X that
results from the following experiment. Choose a random X1 ⊂ X of size cr/4. Denote by
Î = Cle(X1), X̂ = X1 ∪ {xj|∃i ∈ Î : Aij = 1}. The restriction ρA,b assignes a random

partial assignment chosen uniformly from all x̂ ∈ {0, 1}X̂ satisfying

AÎ x̂ = bÎ .

Definition 13. A DNF φ is in normal form with respect to A, b if each of its terms is
locally consistent.

Theorem 3. (Restriction Lemma)
Assume that every column of A contains at most ∆̂ ones, b is arbitrary vector and r =
Ω(n/∆̂). For any k-DNF φ in normal form holds:

Pr[φ|ρ 6= 1] <
(
1− 2−k

)c(φ)/∆̂O(k)

Proof. Consider some k-DNF φ in normal form and the restriction ρA,b. Let X1, X̂, Î be the
corresponding random variables from Definition 12. We may extract at least C0 = c(φ)/k
variable disjoint terms (where c(φ) is a covering number of φ), each of which will be covered
byX1 with probability at least (cr/4n)k, thus the expected number of covered disjoint terms
is C0(cr/4n)k. By Chernoff bound we may assume that there exist C1 = C0/∆̂

O(k) variable
disjoint terms covered by X1.

Let us observe the partial assignment x̂ ∈ {0, 1}X̂ given by ρA,b. This is a random vari-

able distributed uniformly on some affine subspace A ⊂ {0, 1}X̂ . We define the following
experiment. Assume that all bits of x are hidden. In the base consider a term t1 of φ.
Since it is locally consistent there exists a satisfying assignment for the formula

t1 ∧ [AÎx = bÎ ]

Let us reveal the bits of x̂ corresponding to t1. Denote by E1 the event that t1 is satisfied, by
Lemma 6 Pr[E1] ≥ 2−k. If E1 occurs then we terminate the process successfully, otherwise
we proceed according to the following inductive step.

Assume that at step l we revealed values of terms t1, . . . , tl of φ. Let t(l) be the term
corresponding to the partial assignment of revealed bits of x̂ on Vars(t1) ∪ · · · ∪Vars(tl),
thus x̂V ars(t(l)) = t(l), |t(l)| ≤ lk. Consider the set of variables Y (l) ⊆ X̂ located within

the distance 4c−1k from Cle(t(l)). If there is no term tl+1 in φ free of Y (l)-variables then
we terminate the process unsuccessfully. Otherwise, consider the term tl+1 and reveal the
corresponding bits of x̂. Let El+1 be the event that tl+1 is satisfied. We apply Lemma 5 to
show that

Pr[El+1|x̂V ars(t(l)) = t(l)] > 0

and then use Lemma 6 to conclude that Pr[El+1|x̂V ars(t(l)) = t(l)] ≥ 2−k.
Let T be the stopping time of the inductive process, i.e. the last index l for which

we did the inductive step. If at least one event in the list E1, E2, . . . , ET has occurred



then φ is killed to 1. Thus, all we need is to show that T cannot be small in case of
unsuccessful termination. First consider the case when kT ≤ cr/4. Then by Lemma 2
Cle(t(T )) ≤ 2c−1Tk, and since variables Y (T ) are located within the distance 4c−1k from
Cle(t(T ))

|Y (T )| ≤ 2c−1Tk∆̂4c−1k.

Since Y (T ) is a hitting set for φ we have

C1 ≤ |Y (T )| ≤ 2c−1Tk∆̂4c−1k

and
T ≥ C1/∆̂

O(k)

In the other case T > cr/(4k), thus T ≥ C2, where C2 = min(C1/∆̂
O(k), cr/(4k)). Because

r = Ω(n/∆̂) and c(φ) ≤ n we infer that C2 = c(φ)/∆̂O(k). The theorem follows.

In future we will use the following corollary from this theorem:

Corollary 2. There exists an absolute constant D s.t. under the assumption of the theorem
for any normal form k-DNF φ

Pr[φ|ρ 6= 1] < 2−c(φ)/∆̂Dk

5 Lower bound for Res(k)

Here we finally prove a lower bound for Res(k) based on the random restriction constructed
in the previous section.

Recall the Definition 4 of the random matrix An,∆. With high probability An,∆ is
(r, 0.8)-boundary expander for some r = Ω(n). From this an now on, let us fix r, An,∆ and
assume that it is (r, 0.8)-boundary expander. To apply the Corollary 2 we need our matrix
contain finitely many ones in each column.

Definition 14. For matrix An,∆ let J be a set of 0.2r columns of the largest hamming

weight. I ′ = Cle(J), J ′ =
⋃
i∈I′ Ai. By Ân,∆ we denote matrix An,∆ with all columns

corresponding to J ′ and all rows corresponding to I ′ removed. Similarly define b̂ = b[∆n]\I′.

Lemma 7. The matrix Ân,∆ is (r/2, 0.4)-boundary expander in which every column has

weight bounded by some ∆̂ that depends on ∆ only.

Proof. Ân,∆ is (r/2, 0.4)-boundary expander by Lemma 3. Since the matrix An,∆ contains
exactly 3∆n ones and we removed the columns of the largest hamming weight, the matrix
Ân,∆ may contain at most 3∆n/(0.2r) ones in each column. Since r = Ω(n) the lemma
follows.



Lemma 8. Every Res(k) refutation of φn,∆ can be transformed into Res(k) refutation of
the system

Ân,∆x = b̂

in which every line is in normal form with only polynomial increase of the size.

Proof. Clearly every clause in φn,∆ may be easily inferred from the encoding of the system
An,∆x = b. Let I ′, J ′ be defined as in Definition 14. It is not hard to understand that the
empty term is locally consistent. By this fact and Lemma 4 we may assign values to xJ ′
so that all the equations in AI′x = bI′ are satisfied. Then we get a Res(k) refutation of the
system Ân,∆x = b̂. It is left to show that this refutation can be transformed into normal
form.

For every term t that is not locally consistent we may infer t̄ from 2k axioms in poly-
nomial size in Resolution. Thus we may substitute any occurrence of locally inconsistent
terms with ⊥ with the polynomial increase of the proof. The only subtle point are the
singletons xεj, however our expansion condition on Ân,∆ implies that ∀j Cl({j}) = ∅, thus
all singletons are locally consistent.

The following lemma was proved in [BW01] [3].

Lemma 9. (Ben-Sasson–Wigderson)
Assume that the matrix Ân,∆ is (r, c)-boundary expander, c is a positive constant. Then

every resolution refutation of the system Ân,∆x = b̂ requires width εr, where ε depends only
on c.

Now we are ready to prove the final theorem of this talk.

Theorem 4. (Lower Bound)
For any constant ∆ with probability 1 − o(1) every Res(k) refutation of φn,∆ for k <√

log n/ log log n has size 2n
1−o(1)

.

Proof. Consider some outcome of the random variable φn,∆, let Ân,∆ and b̂ be defined
according to Definitions 4, 14. If there exists Res(k) refutation of φn,∆ of size S then

due to Lemma 8 there exists Res(k) refutation P of the system Ân,∆x = b̂ of size SnO(1)

which is in normal form. Next we apply restriction ρÂn,∆,b constructed in the previous
section to the whole refutation P . Due to the Corollary of Restiction Lemma for each line
F of P Pr[F |ρ 6= 1] < 2−c(F )/∆̂Dk

. Applying Switching Lemma (Corollary 1) plugging

in parameters d = 1, γ = 1, δ = (1/∆̂)Dk, s = εr/(2k) we have that for every line F of

Pr [h(F |ρ) > εr/k] ≤ k2−εr(1/∆̂)2Dk2

. Now applying Theorem 2 we get that with probability
at least

1− Sk2−εr/k(1/∆̂)2Dk2

> 1− S2−n/2
O(k2)

we will be able to convert our restricted Res(k) refutation into the Resolution refutation
which width is at most εr.

On the other hand by Lemma 9 the probability of this event must be 0. Indeed, the
formula resulting after the restriction still encodes a linear system over (r/4, 0.2)-boundary



expander matrix, thus the restricted system has always high resolution refutation width.

Altogether this implies S > 2n/2
O(k2)

and the theorem follows.
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