# Lower Bounds for Bounded Depth Frege

Ivan Monakhov

Academical Physico-Technical University



### **Plan of the Presentation**

General notions and notations

Buss-Pudlák Games

Strategy for Sam using Partial functions

Covering Partial Functions and k-transformations

Sam's Strategy provided by k-transformations

Switching Lemma and Existence of k-transformations

Lower Bound for Frege Proofs

# Logical Language

#### Definition

Our logical language will be restricted to

- □ Constants 0 (false) and 1 (true).
- $\boxdot$  Connectives {V, ¬}, V is allowed to have unbounded fan-in.
- $\wedge$  is a shorthand for  $\neg \lor \neg$ , and  $A \Rightarrow B$  for  $\neg A \lor B$ .

#### Definition

The allowable formulas are defined inductively:

- 1. A literal (either a variable or its negation) is a formula.
- 2. If A is a formula, then so is  $\neg A$ .
- 3. If  $\Gamma$  is a finite set of formulas, then so is  $\vee \Gamma$ .

We use  $A \lor B$  to mean  $\lor \{A, B\}$ .

# Frege System

### Definition

Frege system  $\boldsymbol{\mathsf{H}}$  is complete proof system over the basis  $\{\vee,\neg\}$ 

- 1-4

# Depth of the Formula and Proof

#### Definition

The *depth* of a literal is 0, the *depth* of a formula  $\phi$  is the maximal number of alternations of connectives in it and the *size* of the formula is the number of occurences of connectives.

We denote by  $d(\phi)$  the depth of formula  $\phi$ .

#### Definition

A Frege proof of a formula  $\phi$  is a sequence of depth d formulas  $\pi = \{\phi_1, \dots, \phi_s, \phi\}$ , where each formula is either an excluded middle axiom, or is derived from previous lines by other rule. The *size* of a proof is the sum of the sizes of formulas in it. The *depth* of the proof is the maximal depth of formulas.

# The Pigeonhole Principle

Fix sets  $D, R: D \cap R = \emptyset$ , |D| = n + 1, |R| = n, and denote  $S = D \cup R$ . Our set of connectives is  $\{\forall, \neg\}$ , so we use a notation  $\land(\phi_1, \ldots, \phi_k)$  as a shorthand for  $\neg(\lor(\neg \phi_1, \ldots, \neg \phi_k))$ . Definition

The pigeonhole principle of size n, denoted  $PHP_n$ , is the disjunction of four sets of formulas:

$$\neg \bigvee_{j \in R} p_{ij}, i \in D \qquad p_{ik} \land p_{jk}, i \neq j \in D, k \in R$$
  
$$\neg \bigvee_{i \in D} p_{ij}, j \in R \qquad p_{ij} \land p_{ik}, i \in D, j \neq k \in R$$

over the variable set  $p_{ij}$ ,  $i \in D$ ,  $j \in R$ . Each variable  $p_{ij}$  states whether pigeon *i* occupies pigeonhole *j*.

### **Proofs as Games**

Under the definition, introduced by Pudlák and Buss,

#### Definition

The Frege proof of a tautology  $\Phi$  is a two player game.

- $\bigcirc$  Pavel claimes that  $\Phi$  is a tautology.
- $\boxdot$  Sam says that he knows an assignment  $\alpha$  setting  $\Phi$  to 0.
- $\boxdot$  In round t Pavel presents Sam a Boolean formula  $\phi_t$ .
- $\Box$  Sam answers with a bit  $b_t$ , wich is the "value" of  $\phi_t(\alpha)$ .
- Devel needs to present an *immediate contradiction*.

# Immediate Contradiction

Let *B* be a set of Boolean gates. In our case  $B = \{\neg, \lor\}$ .

#### Definition

An *immediate contradiction* with respect to *B* is a set of formulas  $\psi, \phi_1, \ldots, \phi_k$  and a set of bits  $a, b_1, \ldots, b_k$ :

- 1.  $\psi$  is  $g(\phi_1, \ldots, \phi_k)$ , where  $g \in B$ .
- 2. Sam was asked formulas  $\psi, \phi_1, \ldots, \phi_k$ , and gave answers  $a, b_1, \ldots, b_k$ .
- 3.  $a \neq g(b_1, \ldots, b_k)$ .

If a set of answers  $b_1, \ldots, b_5$  to a set of queries  $\phi_1, \ldots, \phi_5$  includes no immediate contradiction as a subset, we call these answers *locally consistent*.

### Game Tree

- Frege Proof as the game is a binary tree, called *game tree*. Nodes are labeled by queries and edges by Sam's answers. The root is labeled Φ and has a single edge labeled 0.
- We say that game tree *covicts* Sam if every leaf is labeled by an immediate contradiction.
- $\Box$  A proof has depth *d* if all queries are depth *d* formulas.
- *Height* of the proof is the length of longest path from the root to a leaf. The *size* of the proof is the number of nodes.

#### Theorem

For any Frege system  $\mathcal{F}$  there exist integer c:

If  $\Phi$  has a standard  $\mathcal{F}$ -proof of size S and maximal depth d, then  $\Phi$  has a Buss-Pudlák proof of height  $\log(S) + O(1)$  and depth d + c and each query is of size at most S.

### **Partial Functions**

#### Definition

Let S be a set,  $D \subseteq S$  and  $f : D \rightarrow \{0,1\}$  a function on D. The ordered pair (D, f) is called a partial Boolean function on S. The set D is the domain of f, denoted by Dom(f). For any set S, let

$$\Delta^{\mathcal{S}} = \{(D, f) | D \subseteq \mathcal{S}, f : D \to \{0, 1\}\}$$

For any (D, f) and  $b \in \{0, 1\}$ ,  $f^{-1}(b) = \{x \in D | f(x) = b\}$ .

### **Transformation of Formulas**

Let  $\mathcal{T}$  be the game-tree for tautology  $\Phi$ , proposed by Pavel. Sam applies a transformation, mapping each formula  $\phi \in \Sigma_{\mathcal{T}}$  to partial function  $(D_{\phi}, f_{\phi})$ , that satisfies the conditions:

1. 
$$\forall x \in D_{\Phi}, f_{\Phi}(x) = 0.$$

There exists a branch ((φ<sub>1</sub>, b<sub>1</sub>), ..., (φ<sub>s</sub>, b<sub>s</sub>)) in the game-tree T:

$$\bigcap_{i=1}^s (f_{\phi_i})^{-1}(b_i) \neq 0$$

3. For any  $\Omega \subseteq \Sigma_T$ , if there exists  $x \in \bigcap_{\phi \in \Omega} D_{\Phi}$ , then the answers  $(f_{\phi}(x))_{\phi \in \Omega}$  to the queries  $(\phi)_{\phi \in \Omega}$ are locally consistent.

# Sam's Strategy

#### Theorem

Let  $\Phi$  be a formula and T a game-tree for  $\Phi$ . If there exists a set S and a transformation  $\phi \stackrel{\Gamma}{\mapsto} (D_{\phi}, f_{\phi})$ : conditions 1,2 and 3 are satisfied, then the game-tree does not convict Sam. Proof.

- Consider a branch  $((\phi_1, b_1), \dots, (\phi_s, b_s))$  of  $\mathcal{T}$  provided by 2.
- □ Choose any  $x \in \bigcap_{i=1}^{s} (f_{\phi_i})^{-1}(b_i)$ . Sam answers Pavel's queries  $\phi_1, \ldots, \phi_s$  along this branch with  $b_1, \ldots, b_s$  respectively.
- $\boxdot$  By 1 Sam answers Pavel's first query  $\phi_1 = \Phi$  with  $b_1 = 0$ .
- ⊡ Since  $x \in \bigcap_{i=1}^{s} \text{Dom}(f_{\phi_i})$ , Sam's responses to Pavel's queries along this branch are locally consistent by 3.

### Matching and Minimal Matching

- Let D, R be sets: D ∩ R = Ø, |D| = n + 1, |R| = n, and denote S = D ∪ R. A matching between D and R is set of mutually disjoint unordered pairs {i, j}.
- □  $\pi$  cover a vertex *i* if  $\{i, j\} \in \pi$  for some *j* ∈ *S*. *V*( $\pi$ ) is the set of vertices covered by  $\pi$ .
- For any set  $I \subset S$ , if  $\pi$  is a matching that covers I but does not cover I on the removal of an edge from it, then  $\pi$  is called *minimal matching* that covers I.
- $\begin{tabular}{ll} \hline $M^S$ denotes the set of matchings between $D$ and $R$. For any $I \subseteq S$: $D \not\subseteq I$, define $ \end{tabular} \end{tabular}$

 $Cover(I) = \{\pi \in M^{S} \mid \pi \text{ covers all vertices in } I\}$ MinCover(I) = {\pi \in M^{S} \model \pi is a minimal matching that covers I}

# **Covering Partial Functions**

Note that for all  $\pi \in \text{MinCover}(I), |\pi| \leq |I|$ .

#### Theorem

Let  $S = D \cup R$ , where |D| = n + 1, |R| = n and  $D \cap R = \emptyset$ . Let  $I \subseteq S$  and  $\rho$  be a matching in  $M^S$ :  $|\rho| + |I| \leq n$ . Then there exists  $\pi \in MinCover(I)$ :  $\pi \cup \rho \in M^S$ .

#### Definition

A covering partial function over S is an ordered pair (I, f):

- $\bigcirc$  (Cover(*I*), *f*) is a partial function on  $M^S$ .
- If  $\pi, \pi' \in \text{Cover}(I)$ :  $\pi \subseteq \pi'$ , then  $f(\pi') = f(\pi)$ .

# Merged Form of Formula

#### Definition

Let  $\phi$  be a disjunction, and  $\phi_i$  are subformulas of  $\phi$  that are not disjunctions, but every subformula of  $\phi$  properly containing them is a disjunction, then the *merged form* of  $\phi$  is defined as the unbounded disjunction  $\bigvee_{i \in I} \phi_i$ .

#### Definition

Let (I, f) and  $(I_j, f_j), j \in J$  be covering partial functions over S. We say that (I, f) satisfies  $Disj[\cup_{j\in J}\{(I_j, f_j)\}]$  if for all  $\pi \in Cover(I)$   $\therefore f(\pi) = 1 \Rightarrow \exists j \in J, \pi \in Cover(I_j) \text{ and } f_j(\pi) = 1.$  $\therefore f(\pi) = 0 \Rightarrow \forall j \in J$ , either  $\pi \in Cover(I_j)$  and  $f_j(\pi) = 0$  or  $\pi \notin Cover(I_j)$ .  $(f_j \text{ is not defined on } \pi)$ 

# k-transformations

Let  $\boldsymbol{\Sigma}$  be closed under taking subformula.

#### Definition

A *k*-transformation *T* is a mapping of formulas  $\phi \in \Sigma$  to covering partial functions  $(I_{\phi}, f_{\phi})$  over *S*:

# **Proposition 1**

#### Theorem

Let  $\Sigma$  be a set of formulas closed under the operation of taking subformula. Let T be a k-transformation mapping formulas  $\phi \in \Sigma$ , to covering partial funcitons  $(I_{\phi}, f_{\phi})$  over S. If for  $\Omega \subset \Sigma$ , there exists a  $\pi \in \bigcap_{\phi \in \Omega} Dom(f_{\phi})$ , then the answers  $(f_{\phi}(\pi))_{\phi \in I}$  to the queries  $(\phi)_{\phi \in I}$  are locally consistent.

#### Proof.

Let  $\Sigma$ , T, and  $\pi$  be as stated in the lemma. Since  $B = \{\neg, \land\}$ , it suffices to consider two cases. [Negation] Let  $\phi, \neg \phi \in \Sigma$ . By definition of a *k*-transformation,  $f_{\neg \phi}(\pi) = \neg f_{\phi}(\pi)$  for all  $\pi \in \text{Dom}(f_{\phi}) = \text{Cover}(I_{\phi})$ . Thus, no immediate contradiction at  $\neg$  gate.

### **Proposition 1. Proof for Disjunction**

[Disjunction] Let  $\phi = \bigvee_{i \in I} \phi_i$ .

- ∴ (true case) Let for some  $j \in I$ ,  $f_{\phi_j}(\pi) = 1$  and  $f_{\phi}(\pi) = 0$ . By definition of a *k*-transformation,  $f_{\phi}(\pi) = 0$  implies for all  $i \in I$ , either  $\pi \in \text{Cover}(I_{\phi_i})$  and  $f_{\phi_i}(\pi) = 0$  or  $\pi \notin \text{Cover}(I_{\phi_i})$ . This contradicts  $f_{\phi_j}(\pi) = 1$ . Thus, there is no immediate contradiction in this case.
- (false case) Let for all j ∈ I, f<sub>φj</sub>(π) = 0 and f<sub>φ</sub>(π) = 1. By definition of a k-transformation, f<sub>φ</sub>(π) = 1 implies there exists i ∈ I: f<sub>φi</sub>(π) = 1. This contradicts f<sub>φj</sub>(π) = 0. Thus, there is no immediate contradiction in this case too.

# **Proposition 2**

#### Theorem

If T is k-transformation for a set of formulas containing PHP<sub>n</sub>, k < n - 1, then  $f_{PHP_n}(\pi) = 0$  for all  $\pi \in Cover(I_{PHP_n})$ . Proof.

 $PHP_n$  is the disjunction of formulas of the form  $\neg\phi,$  where  $\phi$  ranges over

$$\begin{array}{ll} \bigvee_{j \in R} p_{ij}, \ i \in D & \neg p_{ik} \lor \neg p_{jk}, \ i \neq j \in D, \ k \in R \\ \bigvee_{i \in D} p_{ij}, \ j \in R & \neg p_{ij} \lor \neg p_{ik}, \ i \in D, \ j \neq k \in R \end{array}$$

From the definition of a k-transformation, it suffices to show that  $f_{\phi}(\pi) = 1, \forall \pi \in \text{Cover}(I_{\phi})$  for each of the above  $\phi$ .

# Proposition 2. Proof (1)

Let  $i \in D$ . Let  $\phi = \bigvee_{j \in R} p_{ij}$ . Suppose  $f_{\phi}(\pi) = 0$  for some  $\pi \in \operatorname{Cover}(I_{\phi})$ .  $|I_{\phi}| \leq k, \pi \in \operatorname{MinCover}(I_{\phi})$  and k < n - 1, imply  $|\pi| < n - 1$ . Hence, there exists a  $\pi' \in M^S$ :  $\pi \subseteq \pi'$  and  $\pi'$  covers i. Let  $\{i, j\} \in \pi'$  for some  $j \in R$ . But then  $f_{p_{ij}}(\pi') = 1$ while  $f_{\phi}(\pi') = f_{\phi}(\pi) = 0$  contradicts the definition of a k-transformation.

Hence,  $f_{\phi}(\pi) = 1, \forall \pi \in \text{Cover}(I_{\phi})$  for  $\phi$  of the specified type.

# Proposition 2. Proof (2)

Let  $i \neq j \in D$ ,  $k \in R$ . Let  $\phi = \neg p_{ik} \lor \neg p_{jk}$ . Suppose  $f_{\phi}(\pi) = 0$  for some  $\pi \in \text{Cover}(I_{\phi})$ . As before, we have  $|\pi| < n - 1$ . Since  $\pi$  is a matching, either  $\{i, k\} \notin \pi$  or  $\{j, k\} \notin \pi$ . Assume  $\{i, k\} \notin \pi$ . Since  $|\pi| < n - 1$ , there exists a  $\pi' \in M^S$ :  $\pi \subseteq \pi'$  and  $\{i, r\}, \{s, k\} \in \pi'$  for some  $r \neq k \in R$  and  $s \neq i \in D$ . We have  $\pi' \in \text{Cover}(I_{p_{ik}})$  and  $f_{p_{ik}}(\pi') = 0$ . Hence,  $f_{\neg p_{ik}}(\pi') = 1$ . But  $f_{\phi}(\pi') = f_{\phi}(\pi) = 0$  again contradicts definition. The other two types of formulas are proved similarly.

# **Proposition 3.**

#### Definition

We define  $I|_{\rho} = I \setminus V(\rho)$  for any  $I \subseteq S$ . For (I, f) a covering partial function over S, we define  $f|_{\rho}$ : Cover $(I|_{\rho}) \rightarrow \{0, 1\}$  as  $f|_{\rho}(\pi) = f(\pi \cup \rho)$  for all  $\pi \in \text{Cover}(I|_{\rho})$ .

#### Theorem

Let  $\mathcal{T}$  be a game-tree of height r for PHP<sub>n</sub>. Let  $\mathcal{T}$  be a k-transformation mapping formulas  $\phi$  to covering partial functions  $(I_{\phi}, f_{\phi})$  over  $S|_{\rho}$  for some matching  $\rho \in M^{S}$  of size n - m. If  $kr \leq m$ , then there exists a branch  $((\phi_{1}, b_{1}), \dots, (\phi_{s}, b_{s}))$  in the game-three  $\mathcal{T}$ :

$$\bigcap_{i=1}^s (f_{\phi_i})^{-1}(b_i) \neq 0$$

# Proposition 3. Proof (1)

Consider the following procedure  $Walk(\mathcal{T})$ , outputing branch of  $\mathcal{T}$ 

- 1. Set  $\pi \leftarrow \emptyset$  and  $i \leftarrow 1$ .
- 2. Walk along  $\mathcal{T}$  from the root till a leaf reached:
  - (a) Set  $\phi_i \leftarrow$  label of current node.
  - (b) Choose a  $\pi_i \in \text{MinCover}(I_{\phi_i})$ :  $\pi \cup \pi_i \in M^{S|_{\rho}}$ .
  - (c) Set  $b_i \leftarrow f_{\phi_i}(\pi_i)$  and  $\pi \leftarrow \pi \cup \pi_i$ .
  - (d) Walk along edge labeled  $b_i$  leading out of current node.
  - (e) Increment i.
- 3. Output  $((\phi_1, b_1), \dots, (\phi_s, b_s))$ .

# Proposition 3. Proof (2)

- ⊡ Since T is a game-tree for  $PHP_n$ , we have  $\phi_1 = PHP_n$  and  $b_1 = 0$  for any branch.
- ⊡ By Proposition 1,  $f_{PHP_n}(\pi) = 0$  for all  $\pi \in \text{Cover}(PHP_n)$ .
- $\bigcirc$  Walk algorithm choose some matching  $\pi \in \text{MinCover}(I_{PHP_n})$ .
- A matching  $\pi_i$  can be chosen in the loop at Step 2b as long as  $|\pi| + k \leq m$ .
- □  $|\pi|$  is extended at most *r* times by at most *k*, and  $rk \le m$ . Hence, the condition  $|\pi| + k \le m$  is true.

Let  $\pi$  be the matching at the final step of *Walk*. The branch  $((\phi_1, b_1), \dots, (\phi_s, b_s))$  satisfies  $b_i = f_{\phi_i}(\pi)$ . Hence,  $\pi \in \bigcap_{i=1}^{s} (f_{\phi_i})^{-1}(b_i)$ . Thus,  $\bigcap_{i=1}^{s} (f_{\phi_i})^{-1}(b_i) \neq \emptyset$ .

### **Existence of** *k***-transformations**

#### Theorem

(Switching Lemma) Let  $(I_j, f_j)$  be covering partial functions over  $S, |I_j| \leq r$  for all  $j \in J$ . Let  $\ell \geq 10$  and  $p = \ell/n$ . If  $r \leq \ell$  and  $p^4n^3 \leq 1/10$ , then for random  $\rho \in M^S$ ,  $|\rho| = n - \ell$ , Pr{ "There exists a covering partial function (I, f) over  $S|_{\rho}$ : (I, f) satisfies Disj  $\left[\bigcup_{j \in J} \{(I_j|_{\rho}, f_j|_{\rho})\}\right]$  and  $|I| < 2s''\} \geq 1 - (11p^4n^3r)^5$ .

#### Theorem

Let d be an integer,  $0 < \epsilon < 1/5, 0 < \delta < \epsilon^d$  and  $\Sigma$  a set of formulas of depth d. If  $|\Sigma| < 2^{n^{\delta}}, q = n^{\epsilon^{\delta}}$  and n is sufficiently large, then there exists a matching  $\rho \in M^S$  of size  $n - n^{\epsilon^{\delta}}$ : there is a  $2n^{\delta}$ -transformation T mapping formulas  $\phi \in \Sigma$ , to covering partial functions  $(I_{\phi}, f_{\phi})$  over  $S|_{\rho}$ .

### Main Theorem

#### Theorem

Let  $\mathcal{F}$  be a Frege system and let c be the constant that occurs in theorem about Buss-Pudlák Games. Then for sufficiently large n, every depth d proof in  $\mathcal{F}$  of PHP<sub>n</sub> must have size at least  $2^{n^{\mu}}$ , for  $\mu < \frac{1}{2}(\frac{1}{5})^{d+c}$ .

Proof.

Let  $0 < \epsilon < \frac{1}{5}$  and  $0 < \mu < \epsilon^{d+c}/2$ . Suppose  $PHP_n$  has a depth d proof in  $\mathcal{F}$  of size  $2^{n^{\mu}}$ . By the theorem, there exists Buss-Pudlák game-tree  $\mathcal{T}$  of height  $n^{\mu}$  consisting of formulas of size at most  $2^{n^{\mu}}$  and depth at most d + c convicting Sam on  $PHP_n$ . Let  $\Sigma$  be the set of all formulas in  $\mathcal{T}$ . Clearly,  $|\Sigma| \leq 2^{2n^{\mu}}$ .

### Main Theorem. Proof (continue)

- By the previous theorem, there exists a partial matching ρ of size n − n<sup>ϵ<sup>d</sup></sup>: Σ has a 2n<sup>δ</sup>-transformation T mapping formulas φ ∈ Σ to covering partial functions, (I<sub>φ</sub>, f<sub>φ</sub>) over S|<sub>ρ</sub>.
- □ By Proposition 2, we have that condition 1 is satisfied since  $2n^{\delta} < n^{\epsilon^d} 1$  for sufficiently large *n*.
- □ Also  $2n^{\delta} \cdot n^{\mu} \leq n^{\epsilon^{d}}$  for sufficiently large *n*, the conditions of Proposition 3 are satisfied.
- $\odot$  Hence,  $2n^{\delta}$ -transformation satisfies condition 2.
- By Proposition 1, we have that condition 3 is also satisfied.
- $\boxdot$  Thus, by the theorem for transformations and strategy, game-tree  $\mathcal T$  does not convict Sam.
- $\Box$  There is no depth *d* proof of *PHP<sub>n</sub>* in  $\mathcal{F}$  of size less then  $2^{n^{\mu}}$ .

### References



#### Alasdair Urquhart

The complexity of propositional proofs Bulletin of Symbolic Logic 1(4): 425-467 (1995)

Eli Ben-Sasson, Prahladh Harsha Lower Bounds for Bounded Depth Frege Proofs via Buss-Pudlák Games ECCC, Report No. 4 (2003)