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Logical Language

Definition
Our logical language will be restricted to

� Constants 0 (false) and 1 (true).

� Connectives {∨,¬}, ∨ is allowed to have unbounded fan-in.

∧ is a shorthand for ¬ ∨ ¬, and A⇒ B for ¬A ∨ B.

Definition
The allowable formulas are defined inductively:

1. A literal (either a variable or its negation) is a formula.

2. If A is a formula, then so is ¬A.

3. If Γ is a finite set of formulas, then so is ∨Γ.

We use A ∨ B to mean ∨{A,B}.
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Frege System

Definition
Frege system H is complete proof system over the basis {∨,¬}

1. Excluded Middle axiom: A∨¬A

2. Weakening Rule: A
A∨B

3. Merging Rule: ∨({∨Γ}∪∆)
∨(Γ∪∆)

4. Unmerging Rule: ∨(Γ∪∆)
∨({∨Γ}∪∆)

5. Cut Rule: (A∨B), (¬A∨C)
B∨C

By φ1...φk
ψ we denote that ψ can be derived from {φ1, . . . φk}.
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Depth of the Formula and Proof

Definition
The depth of a literal is 0, the depth of a formula φ is the maximal
number of alternations of connectives in it and the size of the
formula is the number of occurences of connectives.

We denote by d(φ) the depth of formula φ.

Definition
A Frege proof of a formula φ is a sequence of depth d formulas
π = {φ1, . . . φs , φ}, where each formula is either an excluded
middle axiom, or is derived from previous lines by other rule.
The size of a proof is the sum of the sizes of formulas in it.
The depth of the proof is the maximal depth of formulas.
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The Pigeonhole Principle

Fix sets D,R: D ∩ R = ∅, |D| = n + 1, |R| = n,
and denote S = D ∪ R.
Our set of connectives is {∨,¬}, so we use a notation
∧(φ1, . . . , φk) as a shorthand for ¬(∨(¬φ1, . . . ,¬φk)).

Definition
The pigeonhole principle of size n, denoted PHPn,
is the disjunction of four sets of formulas:

¬
∨

j∈R pij , i ∈ D pik ∧ pjk , i 6= j ∈ D, k ∈ R

¬
∨

i∈D pij , j ∈ R pij ∧ pik , i ∈ D, j 6= k ∈ R

over the variable set pij , i ∈ D, j ∈ R. Each variable pij states
whether pigeon i occupies pigeonhole j .



Buss-Pudlák Games 2-7

Proofs as Games

Under the definition, introduced by Pudlák and Buss,

Definition
The Frege proof of a tautology Φ is a two player game.

� Pavel claimes that Φ is a tautology.

� Sam says that he knows an assignment α setting Φ to 0.

� In round t Pavel presents Sam a Boolean formula φt .

� Sam answers with a bit bt , wich is the “value” of φt(α).

� Pavel needs to present an immediate contradiction.
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Immediate Contradiction

Let B be a set of Boolean gates. In our case B = {¬,∨}.

Definition
An immediate contradiction with respect to B is a set of formulas
ψ, φ1, . . . , φk and a set of bits a, b1, . . . , bk :

1. ψ is g(φ1, . . . , φk), where g ∈ B.

2. Sam was asked formulas ψ, φ1, . . . , φk ,
and gave answers a, b1, . . . , bk .

3. a 6= g(b1, . . . , bk).

If a set of answers b1, . . . , bS to a set of queries φ1, . . . , φS

includes no immediate contradiction as a subset, we call these
answers locally consistent.
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Game Tree

� Frege Proof as the game is a binary tree, called game tree.
Nodes are labeled by queries and edges by Sam’s answers.
The root is labeled Φ and has a single edge labeled 0.

� We say that game tree covicts Sam if every leaf is labeled by
an immediate contradiction.

� A proof has depth d if all queries are depth d formulas.
� Height of the proof is the length of longest path from the root

to a leaf. The size of the proof is the number of nodes.

Theorem
For any Frege system F there exist integer c:
If Φ has a standard F-proof of size S and maximal depth d, then
Φ has a Buss-Pudlák proof of height log(S) + O(1) and depth
d + c and each query is of size at most S.
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Partial Functions

Definition
Let S be a set, D ⊆ S and f : D → {0, 1} a function on D.
The ordered pair (D, f ) is called a partial Boolean function on S .
The set D is the domain of f , denoted by Dom(f ).
For any set S , let

∆S = {(D, f )|D ⊆ S , f : D → {0, 1}}

For any (D, f ) and b ∈ {0, 1}, f −1(b) = {x ∈ D|f (x) = b}.
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Transformation of Formulas

Let T be the game-tree for tautology Φ, proposed by Pavel.
Sam applies a transformation, mapping each formula φ ∈ ΣT to
partial function (Dφ, fφ), that satisfies the conditions:

1. ∀x ∈ DΦ, fΦ(x) = 0.

2. There exists a branch ((φ1, b1), . . . , (φs , bs))
in the game-tree T :

s⋂
i=1

(fφi
)−1(bi ) 6= 0

3. For any Ω ⊆ ΣT , if there exists x ∈ ∩φ∈ΩDΦ,
then the answers (fφ(x))φ∈Ω to the queries (φ)φ∈Ω

are locally consistent.
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Sam’s Strategy

Theorem
Let Φ be a formula and T a game-tree for Φ. If there exists a set

S and a transformation φ
Γ7→ (Dφ, fφ): conditions 1,2 and 3 are

satisfied, then the game-tree does not convict Sam.

Proof.

� Consider a branch ((φ1, b1), . . . , (φs , bs)) of T provided by 2.

� Choose any x ∈
⋂s

i=1(fφi
)−1(bi ). Sam answers Pavel’s queries

φ1, . . . φs along this branch with b1, . . . , bs respectively.

� By 1 Sam answers Pavel’s first query φ1 = Φ with b1 = 0.

� Since x ∈
⋂s

i=1 Dom(fφi
), Sam’s responses to Pavel’s queries

along this branch are locally consistent by 3.
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Matching and Minimal Matching

� Let D,R be sets: D ∩ R = ∅, |D| = n + 1, |R| = n, and
denote S = D ∪ R. A matching between D and R is set of
mutually disjoint unordered pairs {i , j}.

� π cover a vertex i if {i , j} ∈ π for some j ∈ S .
V (π) is the set of vertices covered by π.

� For any set I ⊂ S , if π is a matching that covers I but does
not cover I on the removal of an edge from it, then π is called
minimal matching that covers I .

� MS denotes the set of matchings between D and R.
For any I ⊆ S : D 6⊆ I , define

Cover(I ) = {π ∈ MS |π covers all vertices in I}
MinCover(I ) = {π ∈ MS |π is a minimal matching that covers I}
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Covering Partial Functions

Note that for all π ∈ MinCover(I ), |π| ≤ |I |.

Theorem
Let S = D ∪ R, where |D| = n + 1, |R| = n and D ∩ R = ∅.
Let I ⊆ S and ρ be a matching in MS : |ρ|+ |I | ≤ n.
Then there exists π ∈ MinCover(I ): π ∪ ρ ∈ MS .

Definition
A covering partial function over S is an ordered pair (I , f ):

� (Cover(I ), f ) is a partial function on MS .

� If π, π′ ∈ Cover(I ): π ⊆ π′, then f (π′) = f (π).
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Merged Form of Formula

Definition
Let φ be a disjunction, and φi are subformulas of φ that are not
disjunctions, but every subformula of φ properly containing them is
a disjunction, then the merged form of φ is defined as the
unbounded disjunction

∨
i∈I φi .

Definition
Let (I , f ) and (Ij , fj), j ∈ J be covering partial functions over S . We
say that (I , f ) satisfies Disj [∪j∈J{(Ij , fj)}] if for all π ∈ Cover(I )

� f (π) = 1⇒ ∃j ∈ J, π ∈ Cover(Ij) and fj(π) = 1.

� f (π) = 0⇒ ∀j ∈ J, either π ∈ Cover(Ij) and fj(π) = 0 or
π 6∈ Cover(Ij). (fj is not defined on π)
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k-transformations

Let Σ be closed under taking subformula.

Definition
A k-transformation T is a mapping of formulas φ ∈ Σ to covering
partial functions (Iφ, fφ) over S :

1. For all φ, |Iφ| ≤ k.

2. I0 = I1 = ∅ (if I = ∅, then Cover(I ) = MS),
∀π ∈ Cover(I0), f0(π) = 0, ∀π ∈ Cover(I1), f1(π) = 1.

3. Ipij = {i , j}, fpij (π) = 1 if {i , j} ∈ π and fpij (π) = 0 otherwise.

4. [Negation] I¬φ = Iφ; f¬φ(π) = ¬fφ(π),∀π ∈ Cover(Iφ).

5. [Disjunction] If φ is a disjunction and ∨j∈Jφj is the merged

form of φ, then (Iφ, fφ) satisfies Disj
[⋃

j∈J{(Iφj
, fφj

)}
]
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Proposition 1

Theorem
Let Σ be a set of formulas closed under the operation of taking
subformula. Let T be a k-transformation mapping formulas φ ∈ Σ,
to covering partial funcitons (Iφ, fφ) over S. If for Ω ⊂ Σ, there
exists a π ∈

⋂
φ∈Ω Dom(fφ), then the answers (fφ(π))φ∈I to the

queries (φ)φ∈I are locally consistent.

Proof.
Let Σ,T , and π be as stated in the lemma.
Since B = {¬,∧}, it suffices to consider two cases.
[Negation] Let φ,¬φ ∈ Σ. By definition of a k-transformation,
f¬φ(π) = ¬fφ(π) for all π ∈ Dom(fφ) = Cover(Iφ). Thus, no
immediate contradiction at ¬ gate.
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Proposition 1. Proof for Disjunction

[Disjunction] Let φ =
∨

i∈I φi .

� (true case) Let for some j ∈ I , fφj
(π) = 1 and fφ(π) = 0.

By definition of a k-transformation, fφ(π) = 0 implies for all
i ∈ I , either π ∈ Cover(Iφi

) and fφi
(π) = 0 or π /∈ Cover(Iφi

).
This contradicts fφj

(π) = 1. Thus, there is no immediate
contradiction in this case.

� (false case) Let for all j ∈ I , fφj
(π) = 0 and fφ(π) = 1.

By definition of a k-transformation, fφ(π) = 1 implies there
exists i ∈ I : fφi

(π) = 1. This contradicts fφj
(π) = 0.

Thus, there is no immediate contradiction in this case too.
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Proposition 2

Theorem
If T is k-transformation for a set of formulas containing PHPn,
k < n − 1, then fPHPn(π) = 0 for all π ∈ Cover(IPHPn).

Proof.
PHPn is the disjunction of formulas of the form ¬φ,
where φ ranges over∨

j∈R pij , i ∈ D ¬pik ∨ ¬pjk , i 6= j ∈ D, k ∈ R∨
i∈D pij , j ∈ R ¬pij ∨ ¬pik , i ∈ D, j 6= k ∈ R

From the definition of a k-transformation, it suffices to show
that fφ(π) = 1,∀π ∈ Cover(Iφ) for each of the above φ.
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Proposition 2. Proof (1)

Let i ∈ D. Let φ =
∨

j∈R pij .
Suppose fφ(π) = 0 for some π ∈ Cover(Iφ).
|Iφ| ≤ k ,π ∈ MinCover(Iφ) and k < n − 1, imply |π| < n − 1.
Hence, there exists a π′ ∈ MS : π ⊆ π′ and π′ covers i .
Let {i , j} ∈ π′ for some j ∈ R. But then fpij (π

′) = 1
while fφ(π′) = fφ(π) = 0 contradicts the definition of a
k-transformation.
Hence, fφ(π) = 1, ∀π ∈ Cover(Iφ) for φ of the specified type.
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Proposition 2. Proof (2)

Let i 6= j ∈ D, k ∈ R. Let φ = ¬pik ∨ ¬pjk .
Suppose fφ(π) = 0 for some π ∈ Cover(Iφ).
As before, we have |π| < n − 1.
Since π is a matching, either {i , k} /∈ π or {j , k} /∈ π.
Assume {i , k} /∈ π. Since |π| < n − 1, there exists a π′ ∈ MS :
π ⊆ π′ and {i , r}, {s, k} ∈ π′ for some r 6= k ∈ R and s 6= i ∈ D.
We have π′ ∈ Cover(Ipik

) and fpik
(π′) = 0. Hence, f¬pik

(π′) = 1.
But fφ(π′) = fφ(π) = 0 again contradicts definition.
The other two types of formulas are proved similarly.
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Proposition 3.

Definition
We define I |ρ = I \ V (ρ) for any I ⊆ S . For (I , f ) a covering
partial function over S , we define f |ρ : Cover(I |ρ)→ {0, 1} as
f |ρ(π) = f (π ∪ ρ) for all π ∈ Cover(I |ρ).

Theorem
Let T be a game-tree of height r for PHPn. Let T be a
k-transformation mapping formulas φ to covering partial functions
(Iφ, fφ) over S |ρ for some matching ρ ∈ MS of size n −m. If
kr ≤ m, then there exists a branch ((φ1, b1), . . . , (φs , bs)) in the
game-three T :

s⋂
i=1

(fφi
)−1(bi ) 6= 0
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Proposition 3. Proof (1)

Consider the following procedure Walk(T ), outputing branch of T
1. Set π ← ∅ and i ← 1.

2. Walk along T from the root till a leaf reached:
I (a) Set φi ← label of current node.
I (b) Choose a πi ∈ MinCover(Iφi ): π ∪ πi ∈ MS|ρ .
I (c) Set bi ← fφi (πi ) and π ← π ∪ πi .
I (d) Walk along edge labeled bi leading out of current node.
I (e) Increment i .

3. Output ((φ1, b1), . . . , (φs , bs)).
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Proposition 3. Proof (2)

� Since T is a game-tree for PHPn, we have φ1 = PHPn and
b1 = 0 for any branch.

� By Proposition 1, fPHPn(π) = 0 for all π ∈ Cover(PHPn).

� Walk algorithm choose some matching π ∈ MinCover(IPHPn).

� A matching πi can be chosen in the loop at Step 2b
as long as |π|+ k ≤ m.

� |π| is extended at most r times by at most k , and rk ≤ m.
Hence, the condition |π|+ k ≤ m is true.

Let π be the matching at the final step of Walk .
The branch ((φ1, b1), . . . , (φs , bs)) satisfies bi = fφi

(π).
Hence, π ∈

⋂s
i=1(fφi

)−1(bi ). Thus,
⋂s

i=1(fφi
)−1(bi ) 6= ∅.
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Existence of k-transformations

Theorem
(Switching Lemma) Let (Ij , fj) be covering partial functions over
S , |Ij | ≤ r for all j ∈ J. Let ` ≥ 10 and p = `/n. If r ≤ ` and
p4n3 ≤ 1/10, then for random ρ ∈ MS , |ρ| = n − `,
Pr{“There exists a covering partial function (I , f ) over S |ρ: (I , f )

satisfies Disj
[⋃

j∈J{(Ij |ρ, fj |ρ)}
]

and |I | < 2s”} ≥ 1− (11p4n3r)s .

Theorem
Let d be an integer, 0 < ε < 1/5, 0 < δ < εd and Σ a set of

formulas of depth d. If |Σ| < 2nδ
, q = nε

δ
and n is sufficiently

large, then there exists a matching ρ ∈ MS of size n− nε
δ
: there is

a 2nδ-transformation T mapping formulas φ ∈ Σ, to covering
partial functions (Iφ, fφ) over S |ρ.
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Main Theorem

Theorem
Let F be a Frege system and let c be the constant that occurs in
theorem about Buss-Pudlák Games. Then for sufficiently large n,
every depth d proof in F of PHPn must have size at least 2nµ

,
for µ < 1

2 ( 1
5 )d+c .

Proof.
Let 0 < ε < 1

5 and 0 < µ < εd+c/2. Suppose PHPn has a depth d
proof in F of size 2nµ

. By the theorem, there exists Buss-Pudlák
game-tree T of height nµ consisting of formulas of size at most
2nµ

and depth at most d + c convicting Sam on PHPn.
Let Σ be the set of all formulas in T . Clearly, |Σ| ≤ 22nµ

.
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Main Theorem. Proof (continue)

� Choose δ: µ < δ < εd/2. For sufficiently large n, |Σ| < 2nδ
.

� By the previous theorem, there exists a partial matching ρ of
size n − nε

d
: Σ has a 2nδ-transformation T mapping formulas

φ ∈ Σ to covering partial functions, (Iφ, fφ) over S |ρ.
� By Proposition 2, we have that condition 1 is satisfied since

2nδ < nε
d − 1 for sufficiently large n.

� Also 2nδ · nµ ≤ nε
d

for sufficiently large n, the conditions of
Proposition 3 are satisfied.

� Hence, 2nδ-transformation satisfies condition 2.
� By Proposition 1, we have that condition 3 is also satisfied.
� Thus, by the theorem for transformations and strategy,

game-tree T does not convict Sam.
� There is no depth d proof of PHPn in F of size less then 2nµ

.
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