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Logical Language

Definition
Our logical language will be restricted to

[0 Constants 0 (false) and 1 (true).

[ Connectives {V,—}, V is allowed to have unbounded fan-in.
A is a shorthand for =V =, and A= B for AV B.
Definition
The allowable formulas are defined inductively:

1. A literal (either a variable or its negation) is a formula.

2. If Ais a formula, then so is —A.

3. If T is a finite set of formulas, then so is VI.

We use AV B to mean V{A, B}.
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Frege System

Definition
Frege system H is complete proof system over the basis {V, -}
1. Excluded Middle axiom: o=

. Weakening Rule: AviB

v({vriua)
v(fruA)

. Unmerging Rule: %

. (AvB), (HAVC
. Cut Rule: %

By 1% \we denote that 1 can be derived from {¢1,...ok}.
P

2
3. Merging Rule:
4
5
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Depth of the Formula and Proof

Definition

The depth of a literal is 0, the depth of a formula ¢ is the maximal
number of alternations of connectives in it and the size of the
formula is the number of occurences of connectives.

We denote by d(¢) the depth of formula ¢.

Definition

A Frege proof of a formula ¢ is a sequence of depth d formulas
m={¢1,...0s, ¢}, where each formula is either an excluded
middle axiom, or is derived from previous lines by other rule.
The size of a proof is the sum of the sizes of formulas in it.
The depth of the proof is the maximal depth of formulas.
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The Pigeonhole Principle

Fixsets D,R: DNR =0, [D|=n+1, |R| =n,

and denote S =D UR.

Our set of connectives is {V, -}, so we use a notation
N(@1, ..., k) as a shorthand for =(V(—¢1,. .., ¢xk)).
Definition

The pigeonhole principle of size n, denoted PHP,,

is the disjunction of four sets of formulas:

ierPij €D pxApu,i#j€D, keR
“ViepPisJER  pjApiu, i €D, j#keER

over the variable set pjj, i € D, j € R. Each variable pj; states
whether pigeon i occupies pigeonhole j.
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Proofs as Games

Under the definition, introduced by Pudldk and Buss,
Definition
The Frege proof of a tautology ¢ is a two player game.
[ Pavel claimes that ® is a tautology.
[ Sam says that he knows an assignment « setting ¢ to 0.
(1 In round t Pavel presents Sam a Boolean formula ¢;.
[J Sam answers with a bit b, wich is the "value” of ¢:(«).

(] Pavel needs to present an immediate contradiction.
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Immediate Contradiction

Let B be a set of Boolean gates. In our case B = {—, V}.

Definition
An immediate contradiction with respect to B is a set of formulas
P, p1,...,0k and a set of bits a, by, ..., bg:

1. v is g(¢1,...,0k), where g € B.

2. Sam was asked formulas v, ¢1, . . ., ¢x,
and gave answers a, by, ..., bg.
3. a #g(bl,...,bk).
If a set of answers by, ..., bs to a set of queries ¢1, ..., ¢s

includes no immediate contradiction as a subset, we call these
answers locally consistent.
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Game Tree

(] Frege Proof as the game is a binary tree, called game tree.
Nodes are labeled by queries and edges by Sam’s answers.
The root is labeled ® and has a single edge labeled 0.

(] We say that game tree covicts Sam if every leaf is labeled by
an immediate contradiction.

(1 A proof has depth d if all queries are depth d formulas.

[1 Height of the proof is the length of longest path from the root
to a leaf. The size of the proof is the number of nodes.

Theorem

For any Frege system F there exist integer c:

If & has a standard F-proof of size S and maximal depth d, then
® has a Buss-Pudlak proof of height log(S) + O(1) and depth

d + ¢ and each query is of size at most S.
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Partial Functions

Definition

Let Sbeaset, DC S and f:D — {0,1} a function on D.

The ordered pair (D, f) is called a partial Boolean function on S.
The set D is the domain of f, denoted by Dom(f).

For any set S, let

A° ={(D,f)IDCS,f:D—{0,1}}

For any (D, f) and b € {0,1}, f~1(b) = {x € D|f(x) = b}.
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Transformation of Formulas

Let 7 be the game-tree for tautology ¢, proposed by Pavel.
Sam applies a transformation, mapping each formula ¢ € X7 to
partial function (Dy, fy), that satisfies the conditions:
1. Vx € Dy, fq)(X) =0.
2. There exists a branch ((¢1, b1), ..., (¢s, bs))
in the game-tree 7:
S
((fs) " (bi) # 0
i=1
3. For any Q C Y7, if there exists x € Ngecq Do,
then the answers (f4(x))scq to the queries (¢)gcq
are locally consistent.
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Sam’s Strategy

Theorem
Let ® be a formula and T a game-tree for . If there exists a set

S and a transformation ¢ i (Dg, fy): conditions 1,2 and 3 are
satisfied, then the game-tree does not convict Sam.
Proof.

[ Consider a branch ((¢1, b1), ..., (¢s, bs)) of T provided by 2.

[ Choose any x € (i_1(fs;)1(bi). Sam answers Pavel's queries
@1, ... ¢s along this branch with by, ..., bs respectively.

(] By 1 Sam answers Pavel's first query ¢1 = ® with by = 0.

] Since x € ();_; Dom(fy,), Sam’s responses to Pavel’s queries
along this branch are locally consistent by 3.
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Matching and Minimal Matching

[ Let D,R besets: DNR =0, |D|=n+1, |R| = n, and
denote S = DU R. A matching between D and R is set of
mutually disjoint unordered pairs {/,}.

[J 7 cover a vertex i if {i,j} € m for some j € S.

V() is the set of vertices covered by 7.

L] For any set | C S, if m is a matching that covers | but does
not cover |/ on the removal of an edge from it, then 7 is called
minimal matching that covers /.

[0 M? denotes the set of matchings between D and R.

Forany | CS: D & I, define
Cover(l) = {m € M> | covers all vertices in /}
MinCover(/) = {7 € M> |7 is a minimal matching that covers /}
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Covering Partial Functions

Note that for all 7 € MinCover(/), |7| < |I|.

Theorem

Let S=DUR, where |[D|=n+1, |R|=nand DNR =10.
Let | C S and p be a matching in M>: |p| + || < n.

Then there exists 1 € MinCover(l): 7 Up € M>.

Definition

A covering partial function over S is an ordered pair (/,f):
1 (Cover(), f) is a partial function on M>.
O If m, 7" € Cover(l): m C «', then f(n') = f(m).
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Merged Form of Formula

Definition

Let ¢ be a disjunction, and ¢; are subformulas of ¢ that are not
disjunctions, but every subformula of ¢ properly containing them is
a disjunction, then the merged form of ¢ is defined as the
unbounded disjunction \/;, ¢;.

Definition
Let (/,f) and (/;,f;),j € J be covering partial functions over S. We
say that (/, f) satisfies Disj[Ujc{(l;, f;)}] if for all 7 € Cover(/)
0 f(r) =1=3j € J,m € Cover(l;) and fj(m) = 1.
0 f(r) =0=Vj € J, either 7 € Cover(/;) and fj(7) =0 or
m & Cover(l;). (f; is not defined on )
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k-transformations

Let ¥ be closed under taking subformula.

Definition

A k-transformation T is a mapping of formulas ¢ € ¥ to covering
partial functions (/y, f) over S:

1. Forall ¢,|lg| < k.
2. I =1l =0 (if I =0, then Cover(/) = M?),
v € Cover(lp), fo(m) =0, Vr € Cover(h), fi(m) = 1.
3. Iy =1i,j}, foy(m) = 1if {i,j} € m and f,,(m) = O otherwise.
4. [Negation] -4 = ly; f-g(m) = ~fy(m),Vm € Cover(ly).
5. [Disjunction] If ¢ is a disjunction and V¢ ¢; is the merged
form of ¢, then (ly, fy) satisfies Disj [UJ-GJ{(I¢J., f¢j)}]
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Proposition 1

Theorem

Let X be a set of formulas closed under the operation of taking
subformula. Let T be a k-transformation mapping formulas ¢ € X,
to covering partial funcitons (1, fs) over S. If for Q C X, there
exists a m € (ycq Dom(fy), then the answers (fy())pes to the
queries (¢)4e) are locally consistent.

Proof.

Let >, T, and 7 be as stated in the lemma.

Since B = {—, A}, it suffices to consider two cases.

[Negation] Let ¢, —¢ € L. By definition of a k-transformation,
f-p(m) = ~fy(m) for all 7 € Dom(fy) = Cover(ly). Thus, no
immediate contradiction at — gate.
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Proposition 1. Proof for Disjunction

[Disjunction] Let ¢ = \/;c, .

[J (true case) Let for some j € /, £, (7) = 1 and fy(7) = 0.
By definition of a k-transformation, fy(7) = 0 implies for all
i € 1, either m € Cover(ly,) and fy,(m) =0 or m ¢ Cover(ly,).
This contradicts fs. () = 1. Thus, there is no immediate
contradiction in this case.

[ (false case) Let for all j € /,f;(7) = 0 and fy(7) = 1.
By definition of a k-transformation, f4(7) = 1 implies there
exists i € I: fy,(m) = 1. This contradicts fs (7) = 0.
Thus, there is no immediate contradiction in this case too.
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Proposition 2

Theorem

If T is k-transformation for a set of formulas containing PHP,,
k < n—1, then fpyp,(m) = 0 for all m € Cover(lpyp,).

Proof.

PHP, is the disjunction of formulas of the form —¢,

where ¢ ranges over

VjerPin i €D i\ -pj, i£j€D, kER
\/iEDpijvjeR _‘pij\/_‘p,‘k,l.ED,j#keR

From the definition of a k-transformation, it suffices to show
that fy(7) = 1,Vm € Cover(ly) for each of the above ¢.
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Proposition 2. Proof (1)

Let i € D. Let ¢ = \/jeRPij-

Suppose fy(m) = 0 for some m € Cover(ly).

|ls] < k,m € MinCover(ly) and k < n—1, imply |7| < n—1.
Hence, there exists a 7' € M°: 7= C n’ and 7’ covers i.

Let {i,j} € 7’ for some j € R. But then f, (7') =1

while f4(7") = fy(m) = 0 contradicts the definition of a
k-transformation.

Hence, f;(7) = 1,Vm € Cover(ly) for ¢ of the specified type.
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Proposition 2. Proof (2)

Leti#je D, keR. Let¢:—|p,-k\/—|pjk.

Suppose fy(7m) = 0 for some m € Cover(ly).

As before, we have |7| < n— 1.

Since 7 is a matching, either {i, k} ¢ mor {j, k} ¢ 7.

Assume {i, k} ¢ 7. Since |r| < n— 1, there exists a 7’ € M>:

7 Cn’ and {i,r},{s,k} € ' forsomer #k e Rands# i€ D.
We have 7" € Cover(lp, ) and f,, (') = 0. Hence, f.,, (') = 1.
But f,(n") = f3(m) = 0 again contradicts definition.

The other two types of formulas are proved similarly.
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Proposition 3.

Definition

We define /|, =1\ V(p) forany | C S. For (/,f) a covering
partial function over S, we define f|, : Cover(/|,) — {0,1} as
flp(m) = f(m U p) for all = € Cover(/|,).

Theorem

Let T be a game-tree of height r for PHP,. Let T be a
k-transformation mapping formulas ¢ to covering partial functions
(14, fs) over S|, for some matching p € M® of size n — m. If

kr < m, then there exists a branch ((¢1, b1), ..., (¢s, bs)) in the
game-three 7T :

S

((fs) (b)) #0

i=1
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Proposition 3. Proof (1)

Consider the following procedure Walk(7'), outputing branch of 7

1. Set m — (@ and i « 1.

2. Walk along 7 from the root till a leaf reached:

) Set ¢; < label of current node.

b) Choose a 7; € MinCover(ly,): mUm; € M3le.

c) Set b « fy.(m;) and m — wU ;.

d) Walk along edge labeled b; leading out of current node.
) Increment i.

v

v vy VvYy

(a
(
(
(
(e

3. Output ((¢1, b1), ..., (s, bs))-
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Proposition 3. Proof (2)

(] Since 7 is a game-tree for PHP,, we have ¢1 = PHP, and
by = 0 for any branch.

J By Proposition 1, fpyp,(m) = 0 for all 7 € Cover(PHP,).
[0 Walk algorithm choose some matching = € MinCover(/pyp,).
[J A matching 7; can be chosen in the loop at Step 2b
as long as || + k < m.
[ |n| is extended at most r times by at most k, and rk < m.
Hence, the condition || 4+ k < m is true.
Let m be the matching at the final step of Walk.
The branch ((¢1, b1), ..., (¢s, bs)) satisfies b; = fy, ().
Hence, 7 € (7_1(fy)1(b:). Thus, M7_1(fy) " (bi) # 0.




Switching Lemma and Existence of k-transformations 6-25
Existence of k-transformations

Theorem

(Switching Lemma) Let (1}, f;) be covering partial functions over
S,|lj| <rforalljeJ. Let¢>10 and p={/n. If r <{ and
p*n3 < 1/10, then for random p € Ms pl=n—1¢,

Pr{ “There exists a covering partial function (I, f) over S|,: (I,f)

satisfies Disj [UJ.EJ{(/J-y,), £1,)}] and 1] < 257} > 1 — (11p*n3r)s.

Theorem

Let d be an integer, 0 < ¢ <1/5,0 <6 < € and ¥ a set of
formulas of depth d. If |£| < 2”5, qg= n<" and n is sufficiently
large, then there exists a matching p € M*> of size n — n<: there is
a 2n’-transformation T mapping formulas ¢ € ¥, to covering
partial functions (4, fy) over S|,.
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Main Theorem

Theorem

Let F be a Frege system and let ¢ be the constant that occurs in
theorem about Buss-Pudlak Games. Then for sufficiently large n,
every depth d proof in F of PHP, must have size at least 2",
for p < 3(%)9+e.

Proof.

Let 0 <e< % and 0 < 1 < €9%¢/2. Suppose PHP, has a depth d
proof in F of size 2. By the theorem, there exists Buss-Pudlak
game-tree 7 of height n* consisting of formulas of size at most
2" and depth at most d + ¢ convicting Sam on PHP,.

Let X be the set of all formulas in 7. Clearly, |Z| < 22",
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Main Theorem. Proof (continue)

B
B

0o

Choose §: ju < & < €9/2. For sufficiently large n, |Z| < 2.
By the previous theorem, there exists a partial matching p of
size n — n“": ¥ has a 2n%-transformation T mapping formulas
¢ € X to covering partial functions, (/y, fy) over S|,.

By Proposition 2, we have that condition 1 is satisfied since
2n% < n — 1 for sufficiently large n.

Also 2n0 - n# < n’ for sufficiently large n, the conditions of
Proposition 3 are satisfied.

Hence, 2n°-transformation satisfies condition 2.

By Proposition 1, we have that condition 3 is also satisfied.
Thus, by the theorem for transformations and strategy,
game-tree 7 does not convict Sam.

There is no depth d proof of PHP, in F of size less then 27"
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