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In this abstract of my talk I present results on the automatizability of
proof systems. Besides the knowledge of the existence of long proofs in proof
systems one is interested if there are algorithms which can calculate such
proofs in a fast way. In the first part I present a result which excludes such
fast algorithms unless a complexity theoretic assumption holds. In the second
part a connection between the Resolution and Res(k)-proof systems and its
automatiziablity is shown.

1 Introduction

In propositional proof complexity, many results are results on lower bounds for the size of
proofs in proof systems. In automatizability of proof systems one is interested if a proof
of a propositional formula can be computed efficiently. It is clear that the size of proofs
in a proof system is not a good measure since there are exponential lower bounds for
the size of proofs for many important proof systems. This implies existence of formulae
for which every algorithm needs at least exponential time to write the proof.

Therefore a better characterization for the efficiency of automatizability algorithms is,
the time an algorithm actually needs to find a proof for a tautology in depenece of the
shortest proof:

Definition 1.1. A proof system P is automatizable if there is a deterministic algorithm
which returns in polynomial time of the shortest P -proof of a tautology τ its P -proof.

Definition 1.2. A proof system P is weakly automatizable if there is a proof system S
that p-simulates P and is automatizable.

2 Non-Automatizability of Resolution

To proof non-automatizability of Resolution (under a complexity theoretic assumption)
we need some tools to deal with NP-complete problems. One tool is fixed parameter
tractability which tries to decide hard problems exactly (and thus not polynomial time
unless P 6= NP). We focus on this later.
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2.1 Preliminaries

Another common tool to deal with NP-completeness, is to find polynomial time al-
gorithms which approximate the exact solution and thus possibly gives false positive
answers. To measure those failures the approximation ratio is a common tool. It com-
pares the worst failure an approximation algorithm can do to the optimal solution.

Definition 2.1. The approximation ratio ρ of an algorithm for an optimization problem
is defined by

ρ := max
{

OPT (A)
OPT

,
OPT

OPT (A)

}
.

There are many types of apprximability e.g., constant factor approximations, which
yield approximation results which are at most a constant factor worse than the optimal
solution (VertexCover). But there are also problems like Clique known which hardly can
be approximated unless P = NP. On the other hand there are problems which can be
approximated arbitrary good if we give the algorithms just enough (polynomial) time:

Definition 2.2. An optimization problem has a polynomial time approximation scheme
(PTAS), if there is an algorithm, which for every ε > 0 computes, in time of at most
nO( 1

ε
), an (1 + ε)-approximation.

Definition 2.3. An optimization problem has an efficient polynomial time approxima-
tion scheme (EPTAS), if there is an algorithm, which for every ε > 0 computes, in time
of at most f(1

ε )p(n), an (1 + ε)-approximation (p a polynomial, f computable).

Those classes of problems are related to fixed parameter tractability as we see later:

2.2 Parametrized Complexity

In parametrized complexity the restriction to polynomial time algorithms is relaxed but
an exact solution of a decision problem is required. A problem instance in parametrized
complexity consists of a classical input as it is known from classical complexity theory
and an integer which restricts the elements contained in a language L (with still infinite
elements in L).

Definition 2.4. FPT consists of all languages L ⊆ Σ∗ × N for which an algorithm Φ
exists, a constant c and a recursive function f : N → N such that:

• the running time of Φ(x, k) is at most f(k)|x|c

• (x, k) ∈ L iff Φ(x, k) = 1

The class FPT can be seen as an equivalent to P in parametrized complexity. Thus
a natural question is if there is an analogue to NP in parametrized complexity. This
analogon is defined through a complete problem via a special reduction preserving the
properties of parametrized complexity classes. Since we do not deal further with this
type of reduction we omit the definition of the reduction and proceed with the definition
of the NP-analogue in parametrized complexity:
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Definition 2.5. The class W[P] contains all the problems which can be parametrized
reduced to weighted circuit satisfiability:
Input: A circuit C and an positive integer k.
Question: Is there a satisfying assignment of C with k ones?

One central lemma we use connects approximation algorithms with the the class FPT :

Lemma 2.6. If a problem A has an EPTAS then A is in FPT .

In this paper we especially consider a problem which is complete inW[P] (via parametrized
reduction). We use this problem in its optimization version to construct a PTAS. The
problem is defined on monotone circuits i.e., circuit containing only ”and” or ”or” gates.

Definition 2.7. The problem monotone minimum circuit satisfying assignment (MMCSA)
is an optimization problem with a circuit C with n variables as input.
Objective function: σ(a) which returns the number of ones in an assignment a ∈ {0, 1}
such that C(a) = 1.

The optimal solution of MMCSA is definied as:

Definition 2.8.
σ(C) = min

a is solution of MMCSA
σ(a)

Up to now there is no direct method to convert the constructed PTAS to an EPTAS.
Thus we use a randomized construction. Therefore we define an equivalent version of R
in parametrized complexity:

Definition 2.9. The class FPR of parametrized problems consists of all languages
L ⊆ Σ∗ × N for which there is a probabilistic algorithm Φ, a constant c and a recursive
function f : N → N such that:

• Φ(x, k) runs in at most f(k)|x|c

• if (x, k) ∈ L then Pr[Φ(x, k) = 1] ≥ 1
2

• if (x, k) 6∈ L then Pr[Φ(x, k) = 1] = 0

As in classical complexity theory it holds

FPT ⊆ FPR.

Since W[P] is the NP analogue it follows intuitively:

FPT ⊆ W[P].

Another important tool which we use for enlarging the gap between an optimal solution
and the worst case guaranteed solution by an approximation algorithm is given by the
Selfimprovement Lemma:
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Lemma 2.10 (Selfimprovement). For every fixed integer d ≥ 1 there exists a polynomial
time computable function π which maps monotone circuits into monotone circuits with
σ(π(C)) = σ(C)d for all C and nd input nodes if C has n input nodes.

Proof. Simply consider a tree of circuits of depth, which connects each output of C to
one input of a C in a higher level. The Lemma follows immediately.

2.3 Results

The central goal is the following theorem:

Theorem 1. If Resolution or tree-like Resolution is automatizable thenW[P] ⊆ co-FPR.

Similar to classical complexity theory it is believed that W[P] ⊆ co-FPR does not
hold. Thus Theorem 1 implies that if W[P] 6⊆ co-FPR Resolution is not automatizable.

As a central lemma we use the following lemma without a proof, which maps every
possible input of the MMCSA problem to an unsatisfiable CNF formula such that a
contradiction can be found within an upper bound and a minimal size.

Lemma 2.11. [[AR01]] There exists a polynomial time computable function τ which
maps any pair (C, 1m), with a monotone circuit C and an integer m, to an unsatisfiable
CNF τ(C,m) such that:

ST (τ(C,m)) ≤ |C|mO(min{σ(C),log m})

and
S(τ(C,m)) ≥ mΩ(min{σ(C),log m}).

As mentioned above the proof consists of two parts:

1. Creating a PTAS for MMCSA under the assumption that (tree-like) Resolution is
automatizable.

2. Create an EPTAS of the PTAS by randomization.

For the construction of the PTAS for MMCSA we give an algorithm which has ap-
proximation ratio h.

Lemma 2.12. If Resolution or tree-like Resolution is automatizable then a constant
h > 1 exists, as well as an algorithm Φ working on pairs (C, k), where C is a monotone
circuit and k is an integer such that:

• the running time of Φ(C, k) is at most exp(O(k2))|C|O(1)

• if σ(C) ≤ k then Φ(C, k) = 1

• if σ(C) ≥ hk then Φ(C, k) = 0.
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Proof. We consider the algorithm Φ which constructs a CNF from C and an integer r
(which is yet not defined). Afterwards it Resolution is simulated on the obtained CNF
and stops this simulation after (|C|rk)h0 steps. The algorithm outputs 1 if the steps the
simulation took (:= S(C, r)) is at most (|C|rk)h1 and 0 otherwise.

By Lemma 2.11 we know that S(C, r) has an upper and a lower bound:

rε min{σ(C),log r} ≤ S(C, r) ≤
(
|C|rmin{σ(C),log r}

)h1

(1)

with constants ε, h0, h1 > 0. The constant h from the lemma is chosen such that

h1

ε
(h + 1) < h2 (2)

holds. We define the last parameter:

r := 2h max{k,
log |C|

k
} (3)

By the selection of the parameters and by the fact that we simulate at most (|C|rk)h0

steps of the refutation of the constructed CNF, it is clear that the runtime is roughly
bound by rk ≤ exp(O(k2))|C|O(1).

Thus we have to check the other two requirements: In general it is clear that log m ≥
hk > k holds. The first case is σ(C) ≤ k:

The restriction to the number of simulated steps is less stringent than the restriction
to the maximal accepted value of S(C, r). Therefore it follows immediately that the
algorithm outputs 1 if σ(C) ≤ k and the second requirement of the Lemma is fulfilled.

The last case to check is σ(C) ≥ hk. Since it still holds log r ≥ hk, S(C,m) ≥ rεhk

can be easily deduced. Therefore it is left to show that rεhk > (|C|rk)h1 . We distinguish
the two cases of (3).

In the first case we assume r = 2hk:

rεhk = 2εh2k2 (2)
> 2h1(h+1)k2

= (2k2h · 2k2
)h1 = (rk · 2k2

)h1 (4)

Since r = 2hk we know k2 ≥ log |C| and it holds:

(rk · 2k2
)h1 ≥ (rk · 2log |C|)h1 = (rk · |C|)h1 (5)

In the second case we have to assume r = 2
h log |C|

k = |C|
h
k :

rεhk = 2
εh2k log |C|

k = |C|εh2 (2)
> |C|h1(h+1) = (|C| · |C|h

k
k )h+1 = (|C| · rk)h+1 (6)

Thus by definition of Φ it outputs 0 in the third case and the proof of Lemma 2.12.

Theorem 2. If Resolution or tree-like Resolution is automatizable then for any fixed
ε > 0 there exists an algorithm Φ receiving as input a monotone circuit C which runs in
time exp(σ(C)O(1))|C|O(1) and approximates σ(C) within a factor 1 + ε.
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Proof. From the last lemma we can construct an approximation algorithm with approx-
imation ratio h:
Compute Φ(C, 1) . . .Φ(C, l) as long as Φ(C, l) 6= 0 and return l if Φ(C, l) = 0.

With the Selfimprovement Lemma we can transform this h-approximation easily into
an 1 + ε-approximation algorithm by choosing d =

⌈
1
ε lnh

⌉
.

So far we have an algorithm which is an PTAS. The main problem is, that for a more
exact solution we have to create a bigger circuit. To proof Theorem 1 we therefore replace
the construction of a bigger circuit via usage of randomness by a circuit of polynomial
size in n and k.

Proof of Theorem 1. For the following construction we need that for a circuit in n vari-
ables and the parameter k,

10 ≤ k ≤ ε(
(

log n

log log n

)2

(7)

is fulfilled. This is not a real restriction. If k ≤ 10 we simply use the brute force
algorithm which is allowed since this concerns only finitely many k. The restriction
k ≤ ε log n

log log n

2
is equivalent to n(2

√
k) ≤ 2n. This holds for for every fixed k for initially

many n. Especially there is an m such that for all n ∈ N : n > m the equation holds.
We can fix those circuits which do not fulfill (7) by adding m dummy inputs which are
all connected by an AND, which is ORed with the ouput of the original circuit.

To proof the theorem we construct a (randomized) circuit β(C, k) and α(k) in poly-
nomial time depending only on C and k such that the following holds:

σ(C) ≤ k ⇒ Pr[σ(β(C, k)) ≤ α(k)] = 1
σ(C) ≥ k + 1 ⇒ Pr[σ(β(C, k)) ≥ 2α(k)] ≥ 1

2

Since the gap between the accepting and the rejecting condition is very small, we use
the Selfimprovement Lemma with d = 2 to obtain a larger gap. With s := k2 we search
a construction of β(C, k) and α(k) such that

σ(C) ≤ s ⇒ Pr[σ(β(C, s)) ≤ α(s)] = 1 (8)
σ(C) ≥ s + 2

√
s ⇒ Pr[σ(β(C, s)) ≥ 2α(s)] ≥ 1

2 (9)

holds.
The construction of the randomized circuit β(C, s) is easy. It consists of d :=

√
s

layers with each N := n3 copies of the circuit C. Therefore each layer has n4 inputs.
Every input of layer i + 1 is randomly connected to a output of layer i. The output of
β(C, s) is the output of a random chosen C in the

√
s-th layer. Additionally we define

α(s) := s
√

s.
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Thus we have to check the two requirements. We begin with requirement (8). It is
easy to see that σ(β(C, s)) at level i is ≤ sd+1−i. Therefore in the first level it is ≤ α(s)
and (8) is fulfilled.

To proof (9) takes more effort. We use the fact that a random bipartite graph between
the layers is a very good expander. This means

P [A set of b circuits in a layer has ≤ bn− a input circuits] ≤ N s

(
4b2n2

N

)a

(10)

which is proven in detail in [AR01].
We proof (9) by two steps. We show that the probability, that the circuit obtained by

the randomized function which do not directly imply σ(β(C, s)) ≥ 2α(s) occur rarely. In
a second step we show that the other circuits imply σ(β(C, s)) ≥ 2α(s) if σ(C) ≥ s+2

√
s

holds.
We define si := (s +

√
s)d−i, which is a measure of how many outputs in layer d have

to be satisfied. In the first step we show that the number of β(C, s) which have a layer
i + 1 which contains a set of si+1 original circuits which have a small number of sources
(≤ si+1(n −

√
s)) in layer i is small enough. We call a circuit having this property is

called bad.
To proof this we use the expander property (10) of the circuit. Thus the sum over

all bad graphs i.e., the sum over probabilities of layers which have a small number of
sources is:

P [β(C, s) is bad] ≤
d−1∑
i=1

N si+1

(
4s2

i+1n
2

N

)si+1
√

s

=
d−1∑
i=1

(
4s2

i+1

n1−3/
√

s

)si+1
√

s (7)

≤
d−1∑
i=1

(
1
3

)si+1
√

s

≤ 1
2

Thus we know that the fraction of β(C, s) which are good is at least 1
2 . Now we check

that these graphs imply σ(β(C, s)) ≥ 2α(s) if σ(C) ≥ s+2
√

s. For the last layer it is clear
that there is 1 = sd output which we want to be true, the output which was randomly
selected. Therefore at layer i + 1 we need at least (s + 2

√
s)si+1 inputs at layer i + 1

satisfied. Since our graph is good, we know that there are at most
√

s · si+1 connections
between layer i and layer i + 1 which have the same sources in layer i. Thus, to satisfy
(s+2

√
s)si+1 inputs at layer i+1 we need to satisfy at least (s+2

√
s)si+1−si+1

√
s = si

outputs of layer i. This means in layer 1 there have to be (s +
√

s)d−1 outputs satisfied,
which implies at least (s + 2

√
s)(s +

√
s)d−1 > 2α(s) inputs.

Thus (9) is proven and therefore the proof of Theorem 1 is complete.

There is just on final note: In 2008 it was shown that the same result holds for
polynomial calculus, too [GL09].
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3 Resolution and Res(k)

We have just shown that Resolution is probably not automatizable. Now we want to
connect this result to interpolation, which can be used to show lower bounds for a
proof system. The Res(k)-proof system works with k-disjunctions. Each k-disjunction
is a disjunction of arbitrary many k-terms. Where each k-term is a conjunction of

up to k literals. Res(k) has three inference rules: Weakening
A

A ∨B, ∧-Introduction
A ∨ l1 B ∨ (l2 ∧ ... ∧ ls)

A ∨B ∨ (l1 ∧ ... ∧ ls) and Cut:
A ∨ (l1 ∧ ... ∧ ls) B ∨ ¬l1 ∨ ... ∨ ¬ls

A ∨B .

3.1 Preliminaries

To show the result I introduce some basics which connect Resolution to Res(2). The
first definitions simplify the transformation of Res(k) formulas to Resolution formulae.

Definition 3.1. The variable zl1,...,ls of variables l1, . . . , l2 is constituted by its defining
clauses:

¬zl1,...,ls ∨ li ∀i ∈ [s]
zl1,...,ls ∨ ¬l1 ∨ · · · ∧ ¬ls

It can be interpreted as l1 ∧ · · · ∧ ls.

Definition 3.2. The set Ck of a set of clauses C is the union of C with all the defining
clauses for the variables zl1,...,ls.

Definition 3.3. The set REF (S) is the set of pairs (C,m) with an CNF formula C
that has an S-refutation with size m.

The set SAT ∗ contains the pairs (C,m) such that C is a satisfiable CNF formula.
(REF (S), SAT ∗) is called the canonical pair of S.
A canonical pair is separable if there is an algorithm running in polynomial time and

returns false on every input from REF (S) and true if (C,m) is in SAT ∗.

Definition 3.4 (Reflection Principle). A CNF formula which is true iff

• z encodes a truth assignment of a CNF x

• x is of size r and uses n variables

is called SAT r
n(x, z).

Let us call a CNF REFn
r,m(x, y) if it evaluates to true iff

• y encodes an S-refutation of a CNF x

• the size of the refutation is m

• x is of size r and uses n variables
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The collection of the CNFs REFn
r,m(y, z) ∧ SATn

r (x, z) is the Reflection Principle of S.

Definition 3.5. A proof system S has the interpolation property in time T = T (m) if
there is an algorithm which runs in time T and decides for an contradictory CNF B :=
A0(x, y0)∧A1(x, y1) (x, y0, y1 are disjoint sets) if A0(x, y0) or A1(x, y1) is contradictory
where m is the minimal size of an refutation of B.

If T (m) is polynomial in m then S has feasible interpolation.

Theorem 3 (Pudlak). If the reflection principle of S has polynomial sized refutations in
a proof system that has feasible interpolation, then the canonical pair for S is separable
in polynomial time.

3.2 Results

Now we can show that, if there is a refutation for Res(k) of size S, then there is a
refutation in Resolution on the modified clause set Ck which is not too large.

Lemma 3.6. If the set of clauses C has a Res(k) refutation of size S, then Ck has
a Resolution refutation of size O(kS). If the Res(k) refutation is tree-like, then the
Resolution refutation is also tree-like.

Proof. To obtain from a Res(k)-refutation for the set of clauses C a refutation for Res-
olution in Ck we transform every k-disjunction into a clause. We simply replace each
k-term l1∧ ...∧ ls with s ≤ k by its defining clause zl1...ls . To complete the proof we have
to check that every inference rule of Res(k) can be represented tree-like in Resolution
and is of size O(k).

Cut rule:
A ∨ (l1 ∧ .. ∧ ls) B ∨ ¬l1 ∨ ... ∨ ¬ls

A ∨B
The corresponding clauses are A ∨ B,A ∨ zl1...ls and B ∨ ¬l1 ∨ ... ∨ ¬ls. Latter and

¬zl1,...,ls ∨ li from Ck can be resolved tree-like to B ∨ ¬zl1,...,ls . Which resolves with
A ∨ zl1,...,ls to A ∨B. In total, the size of the new tree-like refutation is in O(k).
∧-Introduction: Notice that there is a tree-like proof of ¬l1 ∨ ¬zl2,...,ls ∨ zl1,...,ls in Ck.

Thus via the translated clauses A∨ l1 and B ∨ (l2 ∧ ...∧ ls) it can be easily resolved that
A ∨B ∨ (l1 ∧ ... ∧ ls) holds.

Weakening is directly a weakening rule for Resolution which can be eliminated easily.

Theorem 4. The Reflection Principle for Resolution SATn
r (x, z) ∧ REFn

r,m(x, y) has
Res(2) refutations of size (nr + nm)O(1).

We omit the proof in this abstract since it is purely technical and refer to [AB02].

Lemma 3.7. If Res(2) has feasible interpolation, then Resolution is weakly automatiz-
able.
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Proof. Theorem 4 says that the Reflection Principle for Resolution has Res(2) refutation
of polynomial size. By assumption we know that Res(2) has feasible interpolation. With
Theorem 3 of Pudlak we deduce that the canonical pair for Resolution can be separated
in polynomial time. This implies directly that Resolution is weakly automatizable via
Res(2).

Another lemma of Pudlak says [Pud09]:

Lemma 3.8 (Pudlak). The canonical pair of a proof system S is separable in polynomial
time iff S is weakly automatizable.

Theorem 5. If Resolution is weakly automatizable, then Res(2) has feasible interpola-
tion.

Proof. Because Resolution is weakly automatizable, with Lemma 3.8 we obtain that the
canonical pair of Resolution is polynomially separable. The canonical pair of Res(2) is
polynomially separable: For an input of Res(2) by Lemma 3.6 we obtain a refutation
for Resolution whose size is polynomial in the size of the Res(2) refutation. By the
polynomial separability of Resolution we obtain the result for Res(2). For an input of
interpolation A0(x, y) ∧ A1(x, z) in Res(2) we check by the polynoimal separability of
the canonical pair of Res(2) if A0(x, y) is satisfiable. Thus we can check in polynomial
time if A0 or A1 is contradictory.

The results can be generalized as follows: Resolution is weakly automatizable iff Res(k)
has feasible interpolation [AB04].
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