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Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function
G,:{0,1}" — {0,1}" (n< m)

which stretches a short random string x to a long random string
Gn(x) such that a deterministic polytime algorithm f cannot
distinguish them, i.e. the difference between

P f(Gn =1 d
P [F(G00) =1] an
Pr [f(y)=1
P [y =1

is small.
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Pseudorandom Generators in Proof Complexity

Definition
A generator is a family (G,)nen such that
G, :{0,1}" — {0,1}™ for some m > n.

Definition

A generator (G, : {0,1}" — {0,1}™)nen is hard for a propositional
proof system P iff

for all n € N and for any string b € {0,1}™ \ Image(G,)

there is no efficient P-proof of the statement " G,(x1,...,x,) # b .

(x1,...,Xp are propositional variables)



Purpose

To establish a lower bound, it suffices to ...
> ...find a generator G,.
» ...find an encoding of " Gp(x1,...,xn) # b
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Nisan-Wigderson Generator

Let A = (a;j) be matrix of dimension m x n over {0,1}.
For any row number i € [m] let

Ji(A)={je[n] | a;j =1} and
Xi(A) :={x | j € Ji(A)}.
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Nisan-Wigderson Generator

Let A = (a;j) be matrix of dimension m x n over {0,1}.
For any row number i € [m] let

Ji(A)={je[n] | a;j =1} and
Xi(A) :={x | j € Ji(A)}.

Let g1(x1,.--,Xn), ---, &m(x1,...,xn) be boolean functions such
that Vars(g;) C X;(A) for all i € [m].

We are interested in the system of boolean equations:

gl(Xl,... ,Xn) =1

gm(x1,...,xn) =1



Divide and Conquer

Using Nisan-Wigderson generators, the construction of a hard
generator can be decomposed into four aspects:

» combinatorial properties of matrix A,
» hardness conditions for the base functions g,
> encoding of the equation system g(X) = 1, and

» a lower bound.



Combinatorial Properties of Matrix A

For a set of rows | C [m], its boundary is the set

Oa(l) = {j€[n] | Nielay=1}

Remark: 9a(/) defines a function da(l) — 1.

A'is an (r, s, c)-expander iff
» for all i € [m]: |Ji(A)| <s, and
» for all I C [m]: |I| < rimplies [0a(/)| > c|/|.



Encoding of A and g

There are many possible encodings. All share one common
property.

Informal Equation on Encodings
Complexity of a proof for I—g’(f{) % 1=
Complexity of the functions g(X) —
Complexity of the encoding " -




Functional Encoding of A and g

For every Boolean function f satisfying Vars(f) C X;(A) for some
i € [m], an extension variable yf is presumed, living in Vars(A).



Functional Encoding of A and g

For every Boolean function f satisfying Vars(f) C X;(A) for some
i € [m], an extension variable yf is presumed, living in Vars(A).

The functional encoding 7(A, &) is the CNF over the variables
Vars(A) consisting of clauses

VeIV . Vg

for which a row i € [m] exists such that
» Vars(fi)U... U Vars(f,) C Xi(A), and
> g =TV VR
Lemma
The system g(X) = 1 is satisfiable iff T(A, g) is satisfiable.



Examples of Clauses Generated by One Row

> Yei
Since f(x,X) = (—|x A f(O,)?)) \Y (x/\ f(l,)_(’)) for any boolean
function f (Shannon-expansion):

> Vaf(x,%) Y Yxnaf(0,%) V YxAf(1,)

> Yo(-xAf(0,%)) V YE(x,%)

> Yo(xAf(1,%) V YF(x,%)



Size of Functional Encoding

Lemma
If T(A, g) is unsatisfiable then it has an unsatisfiable sub-CNF of
size O(2°m) provided that |J;(A)| <'s for all i € [m] for some s.



Width Lower Bound for Resolution

Definition
A boolean function f is ¢-robust if every restriction p holds:
if f|, is constant then |p| > .



Width Lower Bound for Resolution

Definition
A boolean function f is /-robust if every restriction p holds:
if f|, is constant then |p| > .

Theorem
Let A be an (r, s, c)-expander matrix of size m x n and
let g1, ..., gm be {-robust functions such that Vars(gi) C Xi(A).
Then every resolution refutation of T(A, ) must have width at
least

r(c+4¢—s)

20

provided that a certain restriction holds on ¢,  and s.

Later on the theorem is used with ¢ = %s and ¢ = %s, say.

Thus the width lower bound is ~ r.



Proof of the Width Lower Bound for Resolution

The proof follows the method developed by Ben-Sasson and
Wigderson:

Define a measure i on clauses such that

> 1(C) < u(Go) + p(CG) for any resolution step

G G
c

» 1(C) =1 for any axiom C, and
> u(L)>r.
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The proof follows the method developed by Ben-Sasson and
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Define a measure i on clauses such that

> 1(C) < u(Go) + p(CG) for any resolution step

G G
c

» 1(C) =1 for any axiom C, and
> u(L)>r.

Hence there is a clause C with r/2 < u(C) <'r.

Finally, it suffices that the clause is wide.
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Proof of the Width Lower Bound for Resolution

Definition
The measure p(C) for a clause C is the size of a minimal / C [m]
such that

» Vy; € C3i e l. Vars(f) C X;(A), and (u-cover)
> {gi [ ieli =C]. (k-sem)
Lemma

The measure 1 exhibits the first two demanded properties.



Proof of the Width Lower Bound for Resolution

Lemma

» Ifr/2 < u(C) < r then the width of C is at least r(cgﬁ_s).

» u(L) > r provided that c + ¢ > s + 1.



Claim: forall i € li: [J, NOa(l)| <s—¢
Proof sketch:

> {gi [ iel\{n}} ~IC].
> « witnessing assignment.

» Define a partial restriction p by

p(x;) == {O‘(Xf) if j & Jy Noa(l)

undefined otherwise

p is total for Vars(g;) for i # iy.

p is total on Vars(||C||) since i1 ¢ Iy

gilp=1fori# iy, and || C||[, =0

By (u-sem): gy, = 0.

Let p1 be p restricted to the domain of gj,, i.e. to J; (A).
Since p undef. on J;, N 9a(l): domain of py is Jj, \ da(/).
As g; is (-robust: |J; \ Oa(l)| > ¢

vV vV vV V. VvV Vv Y



Proof (Auxiliary estimations).
» Since A is an (r, s, c)-expander:
SURSZO]
<slb|l + (s=0)|h
=(s=Oll + £kl
<(s=0|l + £-width(C)

» Using |/| > r/2:

_ (c+l—=9)|l] . (c+l—9)r
>
width(C) > 7 > 7




From Width Lower Bound to Size Lower Bound

Theorem
Let 7 be an unsatisfiable CNF in n variable and clauses the width

of which is at most w. Then every refutation of T of size S has a
clause of width w + O(y/nlog S).

Proof.

See "Short proofs are narrow — resolution made simple” by
Ben-Sasson and Wigderson. O



Size Lower Bound for Resolution

Corollary

Let € > 0 be an arbitrary constant,
let A be a (r, s, es)-expander of size m x n, and

let g1, ..., m be (1 — €/2)s-robust functions such that
Vars(gi) C Xi(A).

Then every resolution refutation of T(A, g) has size at least

or (2(2)) 2



Addendum to the proof: Size Lower Bound for Resolution

Example for y, V y, Vy, Vy,

Yo V Yevevg
Yeveve Y 2 Y Yevg AVAEV = HY(HVA)

Yevh V YgVyg o similar

YV YV v, V ¥y,




Existence of Expanders

Theorem
For any parameters s and n there exists an (r, s, %s)-expander of
size n?> X n where
en 1
r=— n se
s

for some constant e.



Addendum to the proof: Existence of Expanders

» To show:

r 2
. 3 n
Pr [A is not an (r,s, Zs)_expander] < Z (g )'DZ

/=1

r
<Y ip
/=1

where py is the probability that any given ¢ rows violate the
second expansion property.

» To estimate py, fix a set | of rows such that £ = |I| < r.

> each column j € [J;c; Ji(A) \ 9a(/) “belongs” to at least two
rows.

> Since 9a(l) € Uje; Ji(A):

Ui Ji(A)] < [0a(1) (Z!J )| = 19a( )I)

iel



Addendum to the proof: Existence of Expanders (Cont.)

» So, the violation of the the second expansion property, i.e.
[0a(1)] < %sf, implies |Ui€,J,-(A)| < %sf.

> pr < Pr[|Uc Ji(A)] < gst].

» See picture on the black board.

» Thus:

5558) . n?/8st . (Sg)sz/s

Pr [|Uics Ji(A)] < 7/8s] < (

st
st AN
(o) ()
28 . of sl/8
(=)

IN

IN




Addendum to the proof: Existence of Expanders (Cont.)?

» Putting all together:

s¢/8

.
28
Pr[A is not an (r, s, c)-expander] < Z n? < >
n
=1

r s¢/8
28 . sr
< 2¢
<y (5
(=1
» This geometric progression is bounded by % if

2<2S~sr)s/8 1
n <=
n 2

» This inequality is satisfied for

~
N—

for e = 2716,



Size Lower Bounds for Resolution

Definition
Let A be a matrix over {0,1} of dimension m x n. A sequence of
functions g1, ..., gm is good for A iff for each i € [m] the

following holds.
> giis 15—6 log log n-robust and
» Vars(gi) C Xi(A).



Size Lower Bounds for Resolution

Definition
Let A be a matrix over {0,1} of dimension m x n. A sequence of
functions g1, ..., gm is good for A iff for each i € [m] the

following holds.
> gjis 1% log log n-robust and
» Vars(gi) C Xi(A).

Corollary (First version)

There exists a family of m x n matrices, AU such that
for any sequence of functions g good for Al™") and

for any resolution refutation m of T(A(™") &),

the size of 7 is at least

n2—0O(1/ loglog n)
exp <) /+/log(n).

m



Proof.

> With loss of generality, m < n?.

» Apply the expander construction with s = % log log n to get an
(r,s, %5)—expander.

» Cross out all rows but m rows arbitrarily. The resulting matrix
is still an (r, s, 2s)-expander.

» Recall size lower bounds for 7(A, g) resolution refutations:

e (2 <mz>> 2°



Proof (cont.)
Using 22" = 2Vlogn < pl/loglogn 5pq 1/s > n—1/5 the exponent
gets:

r2 r2
m-22° = m. nl/loglogn
eznznfé
= s2 m nl/loglogn (expand r)
E2,.,2,.'7(%+1)/|og log n
= (expand s)

s2m
e2n2 n—(%+5)/ log log n .
(sec. inequal.)

m
) n2—O(1/ loglog n)
= [
m



Corollary (First version—just a reminder)

There exists a family of m x n matrices, Al™" | such that
for any sequence of functions g good for Al™") and
for any resolution refutation of T(A(™"), &) has a size at least

m

n2—0(1/ log log n)
exp <> /\/log(n).



Corollary (First version—just a reminder)

There exists a family of m x n matrices, Al™" | such that
for any sequence of functions g good for Al™") and
for any resolution refutation of T(A(™"), &) has a size at least

n2—0(1/ log log n)
exp| ——— | //log(n).

m

Corollary (Second version)

There exists a family of m X n matrices, A(’"’”), such that
for any sequence of functions g good for Al™n) :

» 7(Al™") | g & b) is unsatisfiable for some b € {0,1}™ if
m > n, and

> forany b € {0,1}™, any resolution refutation of
T(AmN) 2@ b has a size at least

n2—(9(1/ log log n)
exp | —————— /~/log(n).



Proof.

» For any be {0,1}™ the following is true.
(Almn) & @ b) unsatisfiable

)
—

B

< g(X) ® b =1is unsatisfiable wrt. X
<= g(X) = —b is unsatisfiable wrt. X
< g(X)# b forall X e {0,1}"

= -b ¢ Image(g)
Indeed, g : {0,1}" — {0,1}™ is not surjective, since m > n.
» Note that the robustness is invariant under negation. O



Lemma
Let 0 < e < 1. For any sufficiently large k, any random function
over k variables is ek-robust which a probability > %



Lemma
Let 0 < e < 1. For any sufficiently large k, any random function
over k variables is ek-robust which a probability > %

Proof.

A function f is not ek-robust iff there exists a restriction p such
that |p| < ek and f|, is constant. In particular, there exists a
restriction p such that |p| = ek and f|, is constant. Thus its truth
table contains a "block” of |p| columns and 2¥~1°! rows such that
the result values are constant.



Proof (cont.).

k\oek o2k—ok=ckyq
2¢% 2
Pr [f is not ek-robust] < (ek)

22"
_ (kY pek—20—ekqq
- (ek) 2
~—~
<2k

< 2(1+e)k—2(1*6)k+1

<271

For the last inequality, (1 + €)k + 2 < 2(=9k suffices. For
sufficiently large ks, this is true.



Definition
Let A be a matrix over {0,1} of dimension m x n.
The characteristic function, x'(A), of the row i € [m] is

Definition
For any m x n matrix A and b € {0,1}™:
7y(A, b) := 7(A,x®(A) ® b)



Corollary (Third version)
There exists a family of m x n matrices, AU™")  such that:
> 7 (Almn) b) is unsatisfiable for some b € {0,1}™ if m > n,
and
> for any b € {0,1}™, any resolution refutation of Ty (Alm") b)
has a size at least

n2—0O(1/ log log n)
exp () /+/log(n).

m

Proof (as patch).

Its remains to show that the functions x(A) are good for A.
During the construction of the expander, the 1s in each rows are
chosen randomly. The cancellation of its rows to get A is at
random. Hence any x{(A) is a random function on at most
1/2loglog n variables. With high probability, these are
5/8-1/2log log n robust, therefore also good for A. O

Remark: This is a superpolynominal lower bound.



Conclusion — Open Problems

» Improve the |/O-ration of the constructed pseudorandom
generators to quadratic.

» Improve the size lower bound for functional encodings, in
particular get rid of the 25 denominator.



Conclusion — Road Not Taken

» Other encodings are possible such as the circuit encoding and
the linear encoding.

» The method of pseudorandom generators admits degree and
size lower bounds for the Polynomial Calculus and the
Polynomial Calculus with Resolution.



Conclusion — Lesson Learned

» The technique of pseudorandom generator can separate the
task of proving lower bounds into —more or less—
independent subtasks.

» Other approaches like Tseitin tautologies fit into this
framework.

» Concepts used in complexity theory might be also used in
proof complexity.
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