Pseudorandom generators hard for propositional proof systems

Markus Latte

April 3 and 4, 2009 JASS09 Санкт Петербург

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

$$G_n: \{0,1\}^n \to \{0,1\}^m$$
 (n < m)

which stretches a short random string \mathbf{x} to a long random string $G_n(\mathbf{x})$ such that a deterministic polytime algorithm f cannot distinguish them, i. e. the difference between

$$\begin{split} & \underset{\mathbf{x} \in \{0,1\}^n}{\mathsf{Pr}} \left[f(\mathcal{G}_n(\mathbf{x})) = 1 \right] & \text{and} \\ & \underset{\mathbf{y} \in \{0,1\}^m}{\mathsf{Pr}} \left[f(\mathbf{y}) = 1 \right] \end{split}$$

is small.

Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

$$G_n: \{0,1\}^n \to \{0,1\}^m$$
 (n < m)

which stretches a short random string \mathbf{x} to a long random string $G_n(\mathbf{x})$ such that a deterministic polytime algorithm f cannot distinguish them, i. e. the difference between

$$\begin{split} & \underset{\mathbf{x} \in \{0,1\}^n}{\mathsf{Pr}} \left[f(\mathcal{G}_n(\mathbf{x})) = 1 \right] & \text{and} \\ & \underset{\mathbf{y} \in \{0,1\}^m}{\mathsf{Pr}} \left[f(\mathbf{y}) = 1 \right] \end{split}$$

is small.

Hence, a random generator for size m can be replaced by a random generator for size n together with G_n without affecting f essentially.

Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

$$G_n: \{0,1\}^n \to \{0,1\}^m$$
 (n < m)

which stretches a short random string \mathbf{x} to a long random string $G_n(\mathbf{x})$ such that a deterministic polytime algorithm f cannot distinguish them, i. e. the difference between

$$\begin{split} & \underset{\mathbf{x} \in \{0,1\}^n}{\mathsf{Pr}} \left[f(\mathcal{G}_n(\mathbf{x})) = 1 \right] & \text{and} \\ & \underset{\mathbf{y} \in \{0,1\}^m}{\mathsf{Pr}} \left[f(\mathbf{y}) = 1 \right] \end{split}$$

is small.

Hence, a random generator for size m can be replaced by a random generator for size n together with G_n without affecting f essentially.

Pseudorandom Generators in Proof Complexity

Definition A generator is a family $(G_n)_{n \in \mathbb{N}}$ such that $G_n : \{0,1\}^n \to \{0,1\}^m$ for some m > n.

Definition

A generator $(G_n : \{0,1\}^n \to \{0,1\}^m)_{n \in \mathbb{N}}$ is hard for a propositional proof system P iff for all $n \in \mathbb{N}$ and for any string $b \in \{0,1\}^m \setminus \text{Image}(G_n)$

there is no efficient *P*-proof of the statement $\lceil G_n(x_1, \ldots, x_n) \neq b \rceil$.

 $(x_1,\ldots,x_n \text{ are propositional variables})$

To establish a lower bound, it suffices to ...

$$\blacktriangleright$$
 ... find a generator G_n .

• ... find an encoding of
$$\lceil G_n(x_1, \ldots, x_n) \neq b \rceil$$
.

Table of contents

Nisan-Wigderson Generators

Width Lower Bound for Resolution

Existence of Expander

Size Lower Bounds for Resolution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nisan-Wigderson Generator

Let $A = (a_{i,j})$ be matrix of dimension $m \times n$ over $\{0,1\}$. For any row number $i \in [m]$ let

$$J_i(A) := \{j \in [n] \mid a_{i,j} = 1\}$$
 and
 $X_i(A) := \{x_j \mid j \in J_i(A)\}.$

(ロ)、(型)、(E)、(E)、 E) の(の)

Nisan-Wigderson Generator

Let $A = (a_{i,j})$ be matrix of dimension $m \times n$ over $\{0,1\}$. For any row number $i \in [m]$ let

$$J_i(A) := \{j \in [n] \mid a_{i,j} = 1\}$$
 and
 $X_i(A) := \{x_j \mid j \in J_i(A)\}.$

Let $g_1(x_1, \ldots, x_n)$, \ldots , $g_m(x_1, \ldots, x_n)$ be boolean functions such that $Vars(g_i) \subseteq X_i(A)$ for all $i \in [m]$.

Nisan-Wigderson Generator

Let $A = (a_{i,j})$ be matrix of dimension $m \times n$ over $\{0,1\}$. For any row number $i \in [m]$ let

$$J_i(A) := \{j \in [n] \mid a_{i,j} = 1\}$$
 and
 $X_i(A) := \{x_j \mid j \in J_i(A)\}.$

Let $g_1(x_1, \ldots, x_n)$, \ldots , $g_m(x_1, \ldots, x_n)$ be boolean functions such that $Vars(g_i) \subseteq X_i(A)$ for all $i \in [m]$.

We are interested in the system of boolean equations:

$$g_1(x_1,\ldots,x_n) = 1$$

$$\vdots$$

$$g_m(x_1,\ldots,x_n) = 1$$

Using Nisan-Wigderson generators, the construction of a hard generator can be decomposed into four aspects:

- combinatorial properties of matrix A,
- hardness conditions for the base functions \vec{g} ,
- encoding of the equation system $\vec{g}(\vec{x}) = \vec{1}$, and
- a lower bound.

Combinatorial Properties of Matrix A

For a set of rows $I \subseteq [m]$, its boundary is the set

$$\partial_{\mathcal{A}}(I) := \{ j \in [n] \mid \exists ! i \in I. a_{i,j} = 1 \}.$$

Remark: $\partial_A(I)$ defines a function $\partial_A(I) \rightarrow I$.

A is an (r, s, c)-expander iff

- for all $i \in [m]$: $|J_i(A)| \leq s$, and
- ▶ for all $I \subseteq [m]$: $|I| \leq r$ implies $|\partial_A(I)| \geq c |I|$.

There are many possible encodings. All share one common property.

Informal Equation on Encodings Complexity of a proof for $\[\vec{g}(\vec{x}) \neq \vec{1}\]^{-} =$ Complexity of the functions $\vec{g}(\vec{x}) -$ Complexity of the encoding $\[\vec{\cdot}\]^{-}$

Functional Encoding of A and \vec{g}

For every Boolean function f satisfying $Vars(f) \subseteq X_i(A)$ for some $i \in [m]$, an extension variable y_f is presumed, living in Vars(A).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Functional Encoding of A and \vec{g}

For every Boolean function f satisfying $Vars(f) \subseteq X_i(A)$ for some $i \in [m]$, an extension variable y_f is presumed, living in Vars(A).

The functional encoding $\tau(A, \vec{g})$ is the CNF over the variables Vars(A) consisting of clauses

$$y_{f_1}^{\varepsilon_1} \vee \ldots \vee y_{f_w}^{\varepsilon_w}$$

for which a row $i \in [m]$ exists such that

• $Vars(f_1) \cup \ldots \cup Vars(f_w) \subseteq X_i(A)$, and

•
$$g_i \models f_1^{\varepsilon_1} \lor \ldots \lor f_w^{\varepsilon_w}$$
.

Lemma

The system $\vec{g}(\vec{x}) = \vec{1}$ is satisfiable iff $\tau(A, \vec{g})$ is satisfiable.

Examples of Clauses Generated by One Row

► y_{gi}

Since $f(x, \vec{x}) \equiv (\neg x \land f(0, \vec{x})) \lor (x \land f(1, \vec{x}))$ for any boolean function f (Shannon-expansion):

- $\blacktriangleright y_{\neg f(x,\vec{x})} \lor y_{x \land f(0,\vec{x})} \lor y_{x \land f(1,\vec{x})}$
- $\blacktriangleright y_{\neg(\neg x \land f(0,\vec{x}))} \lor y_{f(x,\vec{x})}$
- $\blacktriangleright y_{\neg(x \wedge f(1,\vec{x}))} \lor y_{f(x,\vec{x})}$

Size of Functional Encoding

Lemma

If $\tau(A, \vec{g})$ is unsatisfiable then it has an unsatisfiable sub-CNF of size $\mathcal{O}(2^s m)$ provided that $|J_i(A)| \leq s$ for all $i \in [m]$ for some s.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Width Lower Bound for Resolution

Definition

A boolean function f is ℓ -robust if every restriction ρ holds: if $f|_{\rho}$ is constant then $|\rho| \ge \ell$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Width Lower Bound for Resolution

Definition

A boolean function f is ℓ -robust if every restriction ρ holds: if $f|_{\rho}$ is constant then $|\rho| \ge \ell$.

Theorem

Let A be an (r, s, c)-expander matrix of size $m \times n$ and let g_1, \ldots, g_m be ℓ -robust functions such that $Vars(g_i) \subseteq X_i(A)$. Then every resolution refutation of $\tau(A, \vec{g})$ must have width at least

$$\frac{r(c+\ell-s)}{2\ell}$$

provided that a certain restriction holds on c, ℓ and s.

Later on the theorem is used with $c = \frac{3}{4}s$ and $\ell = \frac{5}{8}s$, say. Thus the width lower bound is $\approx r$.

The proof follows the method developed by Ben-Sasson and Wigderson:

Define a measure $\boldsymbol{\mu}$ on clauses such that

•
$$\mu(C) \le \mu(C_0) + \mu(C_1)$$
 for any resolution step

$$\frac{C_0 \quad C_1}{C}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$\mu(C) = 1$$
 for any axiom *C*, and
• $\mu(\perp) > r$.

The proof follows the method developed by Ben-Sasson and Wigderson:

Define a measure $\boldsymbol{\mu}$ on clauses such that

•
$$\mu(C) \le \mu(C_0) + \mu(C_1)$$
 for any resolution step

$$\frac{C_0 \quad C_1}{C},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hence there is a clause C with $r/2 < \mu(C) \leq r$.

The proof follows the method developed by Ben-Sasson and Wigderson:

Define a measure $\boldsymbol{\mu}$ on clauses such that

•
$$\mu(C) \le \mu(C_0) + \mu(C_1)$$
 for any resolution step

$$\frac{C_0 \quad C_1}{C},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mu(C) = 1$$
 for any axiom *C*, and
• $\mu(\perp) > r$.

Hence there is a clause *C* with $r/2 < \mu(C) \leq r$.

Finally, it suffices that the clause is wide.

Definition

The measure $\mu(C)$ for a clause C is the *size* of a minimal $I \subseteq [m]$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The measure $\mu(C)$ for a clause C is the *size* of a minimal $I \subseteq [m]$ such that

$$\forall y_f^{\varepsilon} \in C \ \exists i \in I. \ \text{Vars}(f) \subseteq X_i(A), \text{ and} \qquad (\mu\text{-cover}) \\ \models \{g_i \mid i \in I\} \models \|C\|. \qquad (\mu\text{-sem})$$

Lemma

The measure μ exhibits the first two demanded properties.

Lemma

If r/2 < µ(C) ≤ r then the width of C is at least r(c+ℓ-s)/2ℓ.
 µ(⊥) > r provided that c + ℓ ≥ s + 1.

Claim: for all $i_1 \in I_1$: $|J_{i_1} \cap \partial_A(I)| \le s - \ell$ Proof sketch:

- $\blacktriangleright \{g_i \mid i \in I \setminus \{i_1\}\} \not\models ||C||.$
- α witnessing assignment.
- Define a partial restriction ρ by

$$\rho(x_j) := \begin{cases} \alpha(x_j) & \text{if } j \notin J_{i_1} \cap \partial_A(I) \\ \text{undefined} & \text{otherwise} \end{cases}$$

- ρ is total for Vars (g_i) for $i \neq i_1$.
- ρ is total on Vars(||C||) since $i_1 \notin I_0$
- $g_i|_{\rho} = 1$ for $i \neq i_1$, and $\|C\||_{\rho} = 0$
- By (μ -sem): $g_{i_1}|_{\rho} = 0$.
- Let ρ_1 be ρ restricted to the domain of g_{i_1} , i.e. to $J_{i_1}(A)$.
- Since ρ undef. on $J_{i_1} \cap \partial_A(I)$: domain of ρ_1 is $J_{i_1} \setminus \partial_A(I)$.
- As g_i is ℓ -robust: $|J_{i_1} \setminus \partial_A(I)| \ge \ell$

Proof (Auxiliary estimations).

▶ Since *A* is an (*r*, *s*, *c*)-expander:

$$c |I| \le |\partial_A(I)| \\ \le s |I_0| + (s - \ell) |I_1| \\ = (s - \ell) |I| + \ell |I_0| \\ \le (s - \ell) |I| + \ell \cdot \mathsf{width}(C)$$

▶ Using |*I*| > *r*/2:

width(C)
$$\geq \frac{(c+\ell-s)|I|}{\ell} > \frac{(c+\ell-s)r}{2\ell}$$

From Width Lower Bound to Size Lower Bound

Theorem

Let τ be an unsatisfiable CNF in n variable and clauses the width of which is at most w. Then every refutation of τ of size S has a clause of width $w + O(\sqrt{n \log S})$.

Proof.

See "Short proofs are narrow – resolution made simple" by Ben-Sasson and Wigderson.

Size Lower Bound for Resolution

Corollary

Let $\epsilon > 0$ be an arbitrary constant, let A be a $(r, s, \epsilon s)$ -expander of size $m \times n$, and let g_1, \ldots, g_m be $(1 - \epsilon/2)s$ -robust functions such that $Vars(g_i) \subseteq X_i(A)$.

Then every resolution refutation of $\tau(A, \vec{g})$ has size at least

$$exp\left(\Omega\left(\frac{r^2}{m\,2^{2^s}}\right)\right)/2^s.$$

Addendum to the proof: Size Lower Bound for Resolution

$$\begin{array}{c|c} \text{Example for } y_{f_1} \lor y_{f_2} \lor y_{f_3} \lor y_{f_4} \\ y_{f_1} \lor y_{f_2 \lor f_3 \lor f_4} \\ & \hline y_{f_2 \lor f_3 \lor f_4} \lor f_2 \lor y_{f_3 \lor f_4} \\ & f_2 \lor f_3 \lor f_4 \to f_2 \lor (f_3 \lor f_4) \\ & \hline y_{f_3 \lor f_4} \lor y_{f_3} \lor y_{f_4} \\ \hline y_{f_1} \lor y_{f_2} \lor y_{f_2} \lor y_{f_3} \lor y_{f_4} \end{array} \text{similar}$$

Existence of Expanders

Theorem

For any parameters s and n there exists an $(r, s, \frac{3}{4}s)$ -expander of size $n^2 \times n$ where

$$r = \frac{\epsilon n}{s} n^{-\frac{1}{s\epsilon}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for some constant ϵ .

Addendum to the proof: Existence of Expanders

To show:

$$egin{aligned} & \mathsf{Pr}\left[A ext{ is not an } (r,s,rac{3}{4}s) ext{-expander}
ight] &\leq \sum_{\ell=1}^r inom{n^2}{\ell} p_\ell \ &\leq \sum_{\ell=1}^r n^{2\ell} p_\ell \end{aligned}$$

where p_{ℓ} is the probability that any given ℓ rows violate the second expansion property.

- ▶ To estimate p_{ℓ} , fix a set *I* of rows such that $\ell = |I| \leq r$.
- ► each column j ∈ U_{i∈I} J_i(A) \ ∂_A(I) "belongs" to at least two rows.

• Since
$$\partial_A(I) \subseteq \bigcup_{i \in I} J_i(A)$$
:

$$\left|\bigcup_{i\in I}J_i(A)\right| \leq |\partial_A(I)| + \frac{1}{2}\left(\sum_{i\in I}|J_i(A)| - |\partial_A(I)|\right).$$

Addendum to the proof: Existence of Expanders (Cont.)

▶ So, the violation of the the second expansion property, i.e. $|\partial_A(I)| < \frac{3}{4}s\ell$, implies $|\bigcup_{i \in I} J_i(A)| \leq \frac{7}{8}s\ell$.

$$\blacktriangleright p_{\ell} \leq \Pr\left[\left|\bigcup_{i \in I} J_i(A)\right| \leq \frac{7}{8}s\ell\right]$$

See picture on the black board.

Thus:

$$\Pr\left[\left|\bigcup_{i\in I} J_i(A)\right| \le 7/8s\ell\right] \le \frac{\binom{s\ell}{s\ell/8} \cdot n^{7/8s\ell} \cdot (s\ell)^{s\ell/8}}{n^{s\ell}}$$
$$\le \binom{s\ell}{s\ell/8} \left(\frac{s\ell}{n}\right)^{s\ell/8}$$
$$\le \left(\frac{2^8 \cdot s\ell}{n}\right)^{s\ell/8}$$

Addendum to the proof: Existence of Expanders $(Cont.)^2$

Putting all together:

$$\begin{aligned} & \operatorname{Pr}\left[A \text{ is not an } (r, s, c) \text{-expander}\right] \leq \sum_{\ell=1}^{r} n^{2\ell} \left(\frac{2^8 \cdot s\ell}{n}\right)^{s\ell/8} \\ & \leq \sum_{\ell=1}^{r} n^{2\ell} \left(\frac{2^8 \cdot sr}{n}\right)^{s\ell/8} \end{aligned}$$

• This geometric progression is bounded by $\frac{1}{2}$ if

$$n^2 \left(\frac{2^8 \cdot sr}{n}\right)^{s/8} < \frac{1}{2}$$

This inequality is satisfied for

$$r = \frac{\epsilon}{s} n^{-\frac{1}{s\epsilon}}$$

for $\epsilon = 2^{-16}$.

Size Lower Bounds for Resolution

Definition

Let A be a matrix over $\{0,1\}$ of dimension $m \times n$. A sequence of functions g_1, \ldots, g_m is good for A iff for each $i \in [m]$ the following holds.

- g_i is $\frac{5}{16} \log \log n$ -robust and
- Vars $(g_i) \subseteq X_i(A)$.

Size Lower Bounds for Resolution

Definition

Let A be a matrix over $\{0,1\}$ of dimension $m \times n$. A sequence of functions g_1, \ldots, g_m is good for A iff for each $i \in [m]$ the following holds.

- g_i is $\frac{5}{16} \log \log n$ -robust and
- Vars $(g_i) \subseteq X_i(A)$.

Corollary (First version)

There exists a family of $m \times n$ matrices, $A^{(m,n)}$, such that for any sequence of functions \vec{g} good for $A^{(m,n)}$ and for any resolution refutation π of $\tau(A^{(m,n)}, \vec{g})$, the size of π is at least

$$exp\left(\frac{n^{2-\mathcal{O}(1/\log\log n)}}{m}\right)/\sqrt{\log(n)}.$$
Proof.

- With loss of generality, $m \le n^2$.
- Apply the expander construction with $s = \frac{1}{2} \log \log n$ to get an $(r, s, \frac{3}{4}s)$ -expander.
- Cross out all rows but *m* rows arbitrarily. The resulting matrix is still an (r, s, ³/₄s)-expander.
- ▶ Recall size lower bounds for $\tau(A, \vec{g})$ resolution refutations:

$$exp\left(\Omega\left(\frac{r^2}{m\cdot 2^{2^s}}\right)\right)/2^s$$

. . .

Proof (cont.) Using $2^{2^s} = 2^{\sqrt{\log n}} \le n^{1/\log \log n}$ and $1/s \ge n^{-1/s}$ the exponent gets:

$$\frac{r^2}{m \cdot 2^{2^s}} \ge \frac{r^2}{m \cdot n^{1/\log\log n}}$$

$$= \frac{\epsilon^2 n^2 n^{-\frac{2}{s\epsilon}}}{s^2 m n^{1/\log\log n}} \qquad (\text{expand } r)$$

$$= \frac{\epsilon^2 n^2 n^{-(\frac{4}{\epsilon}+1)/\log\log n}}{s^2 m} \qquad (\text{expand } s)$$

$$\ge \frac{\epsilon^2 n^2 n^{-(\frac{4}{\epsilon}+5)/\log\log n}}{m} \qquad (\text{sec. inequal.})$$

$$= \epsilon^2 \frac{n^{2-\mathcal{O}(1/\log\log n)}}{m} \qquad \Box$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollary (First version—just a reminder)

There exists a family of $m \times n$ matrices, $A^{(m,n)}$, such that for any sequence of functions \vec{g} good for $A^{(m,n)}$ and for any resolution refutation of $\tau(A^{(m,n)}, \vec{g})$ has a size at least

$$exp\left(rac{n^{2-\mathcal{O}(1/\log\log n)}}{m}\right)/\sqrt{\log(n)}.$$

Corollary (First version—just a reminder)

There exists a family of $m \times n$ matrices, $A^{(m,n)}$, such that for any sequence of functions \vec{g} good for $A^{(m,n)}$ and for any resolution refutation of $\tau(A^{(m,n)}, \vec{g})$ has a size at least

$$exp\left(rac{n^{2-\mathcal{O}(1/\log\log n)}}{m}
ight)/\sqrt{\log(n)}.$$

Corollary (Second version)

There exists a family of $m \times n$ matrices, $A^{(m,n)}$, such that for any sequence of functions \vec{g} good for $A^{(m,n)}$:

- ▶ $\tau(A^{(m,n)}, \vec{g} \oplus \vec{b})$ is unsatisfiable for some $\vec{b} \in \{0,1\}^m$ if m > n, and
- ▶ for any $\vec{b} \in \{0,1\}^m$, any resolution refutation of $\tau(A^{(m,n)}, \vec{g} \oplus \vec{b})$ has a size at least

$$exp\left(\frac{n^{2-\mathcal{O}(1/\log\log n)}}{m}\right)/\sqrt{\log(n)}.$$

Proof.

Note that the robustness is invariant under negation.

Lemma

Let $0 < \epsilon < 1$. For any sufficiently large k, any random function over k variables is ϵ k-robust which a probability $\geq \frac{1}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

Let $0 < \epsilon < 1$. For any sufficiently large k, any random function over k variables is ϵ k-robust which a probability $\geq \frac{1}{2}$.

Proof.

A function f is not ϵk -robust iff there exists a restriction ρ such that $|\rho| < \epsilon k$ and $f|_{\rho}$ is constant. In particular, there exists a restriction ρ such that $|\rho| = \epsilon k$ and $f|_{\rho}$ is constant. Thus its truth table contains a "block" of $|\rho|$ columns and $2^{k-|\rho|}$ rows such that the result values are constant.

Proof (cont.).

$$\Pr[f \text{ is not } \epsilon k \text{-robust}] \leq \frac{\binom{k}{\epsilon k} 2^{\epsilon k} 2^{2^k - 2^{k-\epsilon^k} + 1}}{2^{2^k}}$$
$$= \underbrace{\binom{k}{\epsilon k}}_{\leq 2^k} 2^{\epsilon k - 2^{(1-\epsilon)k} + 1}$$
$$\leq 2^{(1+\epsilon)k - 2^{(1-\epsilon)k} + 1}$$
$$\stackrel{!}{\leq} 2^{-1}$$

For the last inequality, $(1 + \epsilon)k + 2 < 2^{(1-\epsilon)k}$ suffices. For sufficiently large ks, this is true.

Definition

Let A be a matrix over $\{0,1\}$ of dimension $m \times n$. The characteristic function, $\chi_i^{\oplus}(A)$, of the row $i \in [m]$ is $\vec{x} \mapsto \oplus X_i(A)$.

Definition

For any $m \times n$ matrix A and $b \in \{0, 1\}^m$: $\tau_{\chi}(A, \vec{b}) := \tau(A, \chi^{\oplus}(A) \oplus \vec{b})$

Corollary (Third version)

There exists a family of $m \times n$ matrices, $A^{(m,n)}$, such that:

- ▶ $au_{\chi}(A^{(m,n)}, \vec{b})$ is unsatisfiable for some $\vec{b} \in \{0,1\}^m$ if m > n, and
- for any $\vec{b} \in \{0,1\}^m$, any resolution refutation of $\tau_{\chi}(A^{(m,n)}, \vec{b})$ has a size at least

$$exp\left(\frac{n^{2-\mathcal{O}(1/\log\log n)}}{m}\right)/\sqrt{\log(n)}.$$

Proof (as patch).

Its remains to show that the functions $\chi_i^{\oplus}(A)$ are good for A. During the construction of the expander, the 1s in each rows are chosen randomly. The cancellation of its rows to get A is at random. Hence any $\chi_i^{\oplus}(A)$ is a random function on at most $1/2 \log \log n$ variables. With high probability, these are $5/8 \cdot 1/2 \log \log n$ robust, therefore also good for A.

Conclusion — Open Problems

- Improve the I/O-ration of the constructed pseudorandom generators to quadratic.
- Improve the size lower bound for functional encodings, in particular get rid of the 2^{s^s} denominator.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion — Road Not Taken

- Other encodings are possible such as the circuit encoding and the linear encoding.
- The method of pseudorandom generators admits degree and size lower bounds for the Polynomial Calculus and the Polynomial Calculus with Resolution.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- The technique of pseudorandom generator can separate the task of proving lower bounds into —more or less independent subtasks.
- Other approaches like Tseitin tautologies fit into this framework.
- Concepts used in complexity theory might be also used in proof complexity.