
Pseudorandom generators hard for propositional

proof systems

Markus Latte

April 3 and 4, 2009
JASS 2009

Course 1: Propositional Proof Complexity
St. Petersburg

Abstract

Based on the concept of pseudorandom generators, the notation of a
generator which is hard for a proof system is introduced. Such a generator
admits a superpolynomial lower bound. For the resolution proof system a
hard generator is constructed which bases on expanders.

1 Introduction

Informally speaking, in complexity theory, a pseudorandom generator [6, Chap. 8]
is a computable function

Gn : {0, 1}n → {0, 1}m (n < m)

which stretches a short (random) string x to a long (almost random) string Gn(x)
in a reasonable way. That is, a given computable function f : {0, 1}m → {0, 1}
can hardly distinguish them, i. e. the difference between

Pr
x∈{0,1}n

[f(Gn(x)) = 1] and

Pr
y∈{0,1}m

[f(y) = 1]

is small. Hence, a random generator for size m can be replaced by a random
generator for size n together with Gn without affecting f essentially. On top
of this concept, the strength of a whole class C of functions can be determined.
A pseudorandom generator G is secure or hard for such a class if none of its
functions can distinguish random inputs and stretched inputs in the previous

The primary source for the presentation is a publication by Alekhnovich, Ben-Sasson,
Razborov and Wigderson [1].

1

sense. If this is the case then informally the class consists of “simple” functions
only. Indeed, a function like

g : {0, 1}m → {0, 1}, z 7→ if (∃y ∈ {0, 1}n.Gn(y) = z) then 1 else 0 (1)

is a candidate to separate both distributions but might have a high run-time
complexity.

The idea to expose a class as weak with respect to a generator motivates to
adapt the concept of pseudorandom generators to the field of proof complexity.

Definition 1. A generator is a family (Gn)n∈N of functions such that Gn :
{0, 1}n → {0, 1}m(n) for some stretch function m : N → N. Such a generator
is hard for a propositional proof system P iff for all n ∈ N and for any string
b ∈ {0, 1}m(n) \ Image(Gn) the size of any P -proof of the propositional formula

ϕn,b := pGn(x1, . . . , xn) 6= bq (2)

is superpolynomial. The notation p q denotes some reasonable encoding of its
argument where x1, . . . , xn are propositional variables. y

To get a superpolynomial lower bound for the proof system P infinite many
instances of the formulas ϕn,b have to be tautologies. In particular, this is the
case if Gn is not surjective, because the propositional variables x1, . . . , xn are
implicitly universally quantified. Being complete a proof system can prove the
tautologies among ϕn,b but might require superpolynomial or even exponential
many steps—in analogy to (1). In other words, assume that there exists a hard
generator G for a proof system P and that G consists of non-surjective functions
only. Then P cannot efficiently prove even the most basic things about the
generator, namely that it is not surjective mapping [1, Sec. 1].

Moreover, some principles which provide high lower bounds can be rephrased
as families of non-surjective functions [1, Examples 1–3].

2 Preliminaries

The set {1, . . . , n} is denoted by [n] for any natural number n. The logarithms,
log(), refers to the base 2 always.

As for resolution, variables are written as x, y, A literal is a variable
x or its negation ¬x. For convenience, we write x1 for x, and x0 for ¬x. The
exponent is called switch. A clause is a (finite) disjunction of literals, often
written as a set or as a list. The empty clause is denoted by ⊥. The width of a
clause C, written as width(C), is the number of its literals. A CNF is a (finite)
conjunction of clauses. The size of a CNF is the sum of the widths of its clauses.
The considered resolution calculus [4, Chap. 2][1] comprises the resolution rule
C,x D,¬x

C,D . If a resolution proof derived clause is empty, we say that it is a
resolution refutation. For a resolution π, we write |π| for its size, that is the
number of rule applications. The width, width(π), is the biggest width of all
its clauses. For the sake of convenience, the weakening rule, C

D for C ⊆ D, is

2

assumed to be admissible with respect to the width, that is that the elimination
of instances of the weakening rule does not increase the width of a refutation.

The boolean values are 0 and 1 called “false” and “true”, respectively. A
restriction, or assignment synonymously, is a partial function ρ from the variable
to {0, 1}. Its domain is written as |ρ|. A restriction is called total if its domain
contains all variables. Just as for arbitrary functions, if the domain is {x1, . . . , xn}
we may also write [x1 7→ ρ(x1), . . . xn 7→ ρ(xn)] instead of ρ. The application
of a restriction ρ to a boolean formula ϕ is written as ϕ�ρ. In that process
the formula is also simplified as far as the laws of the neutral elements are
applicable [4, page 5]. Similarly for a boolean function f , its restriction to ρ is
denoted by f�ρ. If a restriction ρ to a formula ϕ or a function f yields 1, we
may write ρ |= ϕ or ρ |= f , respectively. In this case we say that the restriction
satisfies the respective object. However, if the restriction yields 0 the restriction
is said to falsify. For two boolean functions f and g we write f |= g if every
restriction ρ satisfies g whenever it does f .

For a boolean function f(x1, . . . , xn) the variable xi is essential, or, synony-
mously, f depends on xi, if f�[xi 7→ 0] 6= f�[xi 7→ 1]. The set of all essential
variables is Vars(f).

The usual asymptotic notations O() and Ω() are used [7]. The class of
all exponential functions to a base greater than one is written as exp.

3 Generators for Resolution

To construct a generator hard for resolution, Definition 1 can be rephrased.

A generator (Gn : {0, 1}n → {0, 1}m(n))n∈N is hard for resolution iff
for all n ∈ N and for any string ~b ∈ {0, 1}m(n) \ Image(Gn) the size
of any resolution refutation of a CNF, stating that

Gn(x1, . . . , xn) = ~b, (3)

is superpolynomial.

For simplicity, we may also write m instead of m(n). Later on, in Corollary 29
et sequentes, we will take a function m which satisfies m(n) > n, finally. Hence
there will be for (almost) all n ∈ N a suitable ~b ∈ {0, 1}m(n). As a byproduct
we also get a superpolynomial lower bound. It remains, for one thing, to find a
candidate for a generator and, for another thing, to prove the requested lower
bound. The generator Gn to be constructed can be decomposed into functions
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) such that (3) is equivalent to the following
system of equations.

g1(x1, . . . , xn) = 1
...

gm(x1, . . . , xn) = 1

 (4)

3

The functions gis are called base functions. Beside trivial settings, the base
functions are satisfiable. Hence, to prove this system of equations unsatisfiable
any two base functions should share some of their essential variables. Intuitively,
the more variables a set of function share the simpler it is prove (4) unsatisfiable.
To state this property more precisely, we utilize the notation of an expander, c. f.
Definition 6. To provide a size lower bound as required by Definition 1, we seize
the following observation.

Theorem 2. Let τ be an unsatisfiable CNF in n variable and clauses the width
of which is at most w. Then every refutation of τ of size S has a clause of width
w +O(

√
n logS).

Proof. See [5, Theorem 3.2].

Hence, it suffices to provide a lower bound for the width of a refutation. The
proof of this lower bound is given in Section 6.

4 Nisan-Wigderson Generators

We presume that there is an infinite support of variables (xi)i∈N.

Definition 3. Let A = (ai,j) be a matrix of dimension m× n over {0, 1}. For
any row number i ∈ [m] let

Ji(A) := {j ∈ [n] | ai,j = 1} and
Xi(A) := {xj | j ∈ Ji(A)}.

And additionally

X(A) := {xi, . . . , xn}.

Unless stated otherwise, the parameters n, m, and A are used implicitly. y

Definition 4. Let g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) be boolean functions such
that Vars(gi) ⊆ Xi(A) for all i ∈ [m]. The function

G : {0, 1}n → {0, 1}m, (x1, . . . , xn) 7→
(
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)

)
is called as Nisan-Wigderson generator [1]. y

From now on, the symbols g1, . . . , gm refer to such functions unless otherwise
stated. Synonymously, we write ~g(~x) or ~g for these functions. Using such kind
of base functions, the construction of a hard generator can be decomposed into
four aspects: (a) combinatorial properties of matrix A, (b) hardness conditions
for the base functions ~g, (c) encoding of the equation system ~g(~x) = ~1, and (d)
a lower bound. As a first step, we will detail a combinatorial property which
meets the idea sketched at the end of Section 3. An encoding is given later on,
in Section 5, followed up by the proof of a lower bound.

4

Definition 5 (Boundary). Let A be an (m× n)-matrix over {0, 1}. For a set
of rows I ⊆ [m], its boundary is the set

∂A(I) := {j ∈ [n] | ∃!i ∈ I.ai,j = 1} .

The members of this set are called boundary elements (of the rows I). y

Remark. The concept of a boundary also admits an unique function ∂A(I)→ I
with j 7→ i such that ai,j = 1. y

Definition 6 (Expander). An (m × n)-matrix A over {0, 1} is an (r, s, c)-
expander iff

(a) for all i ∈ [m]: |Ji(A)| ≤ s, and

(b) for all I ⊆ [m]: |I| ≤ r implies |∂A(I)| ≥ c |I|. y

The last item can be understood as that each row in I has at least c boundary
elements on average and implements the idea explained at the end of Section 3.

Remark. The concept of an expander can be related to the edge expansion [2]

cE(G) := min
1≤|U |≤|V |/2

|E(U, V \ U)|
|U |

of an undirected graph G = (V,E). The notation E(A,B) is an abbreviation for
{{a, b} ∈ E | a ∈ A, b ∈ B}. Let AG = (av,e)v∈V,e∈E be the incidence matrix of
G, that is av,e = 1 iff v ∈ e. Note that ∂AG(I) is just E(I, V \ I). Hence for any
c, the matrix AG is a (|V | /2, d, c)-expander iff cE(G) ≥ c, provided that d is an
upper bound on the degree of the vertices in G. Moreover, the set ∂AG(I) is the
edge boundary of the nodes in I, that is the set of edges connecting the sets I
and V \ I. y

Theorem 7 (Existence of Expanders). For any positive parameters s and n
there exists an (r, s, 3

4s)-expander of size n2 × n where

r =
εn

s
n−

1
sε

for some constant ε.

Proof. We use a probabilistic argumentation. If the probability that a random
object does not meet a specification is strictly less than one then there exists an
object with the specification. Here, we construct a random matrix A = (ai,j) as
follows. The initial matrix has the size (n2 × n) and contains zeros only. For
each row i, we pick s times a column number j from [n] independently and at
random, and set the entry at (i, j) to one. Obviously, the matrix A meets the
first expansion properties as mentioned in Definition 6. Next, we estimate the

5

probability that A is not an (r, s, 3
4s)-expander:

Pr
[
A is not an (r, s, 3

4s)-expander
]
≤

r∑
`=1

(
n2

`

)
p`

≤
r∑
`=1

n2`p` , (5)

where p` is the probability that any given ` rows violate the second expansion
property. To estimate p`, we fix a set I of rows such that ` = |I| ≤ r. For each
column j ∈

⋃
i∈I Ji(A) \ ∂A(I) there are at least two rows j such that ai,j = 1.

Since ∂A(I) ⊆
⋃
i∈I Ji(A),

∣∣⋃
i∈I Ji(A)

∣∣ ≤ |∂A(I)|+ 1
2

(∑
i∈I
|Ji(A)| − |∂A(I)|

)

=
1
2

(∑
i∈I
|Ji(A)|+ |∂A(I)|

)
.

So, the violation of the the second expansion property, i. e. |∂A(I)| < 3
4s`, implies∣∣⋃

i∈I Ji(A)
∣∣ ≤ 7

8s` because
∑
i∈I |Ji(A)| is bounded by s`. Hence, we have

p` ≤ Pr
[∣∣⋃

i∈I Ji(A)
∣∣ ≤ 7

8s`
]

. (6)

To calculate the right hand side, we record the construction process of A as a
list starting with the empty list. For each entry (i, j) to be set one, we append i
if j ∈

⋃
i∈I Ji(A). The resulting list x contains exactly s` elements, each in [n].

There are ns` forms of such lists. To count the lists which have at most 7
8s`

different elements, we consider those lists equivalently as lists of length s` over
[n] but where exactly 1

8s` positions have pointers. Each pointer addresses a
previous position rather than a value in [n]. However, such a pointer means that
the value of the source is that of the target. Transitivity applies. There are at
most (

s`

s`/8

)
· n7/8s` · (s`)s`/8

such lists with pointer. Notice that the preceding formula also comprises those
lists with a cyclic pointer structure which are useless for us. Finally, we have

Pr
[∣∣⋃

i∈I Ji(A)
∣∣ ≤ 7

8s`
]
≤

(
s`
s`/8

)
· n7/8s` · (s`)s`/8

ns`

≤
(
s`

s`/8

)(
s`

n

)s`/8
≤
(

28 · s`
n

)s`/8
(7)

6

using that
(
s`
s`/8

)
≤
∑s`
k=0

(
s`
k

)
= 2s`. Sticking together the inequality (5), (6),

and (7), one gets

Pr
[
A is not an (r, s, 3

4s)-expander
]
≤

r∑
`=1

n2`

(
28 · s`
n

)s`/8

≤
r∑
`=1

n2`

(
28 · sr
n

)s`/8
.

since ` ≤ r by the choice of `. The geometric progression is bounded by 1
2 if

n2

(
28 · sr
n

)s/8
<

1
2

,

or, equivalently,

r <
n

s
2−8

(
1

2n2

)8/s

=
n

s
· 2−8(1+1/s) · n−16/s .

This inequality is satisfied for r := εn
s n
− 1
sε and ε := 2−16. Therefore the

probability that A is not an (r, s, 3
4s)-expander is strictly less than one. Hence

there exists such an expander.

Remark. The fraction 3/4 in Theorem 7 is rather arbitrary. The same state-
ment but for any other fraction strictly between 0 and 1 holds. However, the
corresponding constant ε depends on the respective fraction. y

5 Encoding

5.1 The Functional Encoding

There are many possible encodings of the equation system (4) [1, Sec. 2.3]. Here,
we detail the functional encoding only. In any case, the proof system should
benefit from the encoding as less as possible to avoid short refutations. Therefore,
the relationship among the base functions are hidden. The encoding says only
which other functions a base function implies or supports. To this end, for every
boolean function f satisfying Vars(f) ⊆ Xi(A) for some i ∈ [m], an extension
variable yf is presumed. The set of all such extension variables for a given matrix
A is denoted by Y(A).

Definition 8 (Functional Encoding). The functional encoding τ(A,~g) is a CNF

over the variables Y(A) consisting of clauses

yε1f1 ∨ . . . ∨ y
εw
fw

for which a row i ∈ [m] exists such that

7

• Vars(f1) ∪ . . . ∪ Vars(fw) ⊆ Xi(A), and (fun-var)

• gi |= fε11 ∨ . . . ∨ fεww . (fun-sem)

Every clause in τ(A,~g) is called an axiom. y

Note that, from now on, we are faced with two kinds of variables. First, the
variables x1, . . . ∈ X(A), and, secondly, the extension variable, namely yf ∈ Y(A).

Example 9. For every row i ∈ [m] the clause ygi is an axiom. y

Example 10. For any boolean function f(x, ~x) the Shannon expansion holds,
that is

f(x, ~x)⇔
(
¬x ∧ f(0, ~x)

)
∨
(
x ∧ f(1, ~x)

)
. (8)

If x, ~x ∈ Xi(A) for some row i ∈ [m] then the following clauses are axioms.

y¬f(x,~x) ∨ y¬x∧f(0,~x) ∨ yx∧f(1,~x)

¬yf(x,~x) ∨ y¬x∧f(0,~x) ∨ yx∧f(1,~x)

y¬(¬x∧f(0,~x))∨ yf(x,~x)

y¬(x∧f(1,~x))∨ yf(x,~x)

For instance, the first two axioms correspond to the implication from left to right
in (8). Moreover, let f and g be two boolean functions the essential variables
of which correspond to a certain row. Since ¬(f ∧ g) ∨ f , ¬(f ∧ g) ∨ g, and
¬f ∨ ¬g ∨ (f ∧ g) are tautologies the following clauses are axioms as well.

¬yf∧g ∨ yf
¬yf∧g ∨ yg

¬yf ∨ ¬yg ∨ yf∧g y

In other words, the last example shows that an induction on the complexity
of a function is admissible. For instance, we have for any assignment α that
α |= yf(x,~x) if and only if, α |= yf(0,~x) and α 6|= yx, or α |= yf(1,~x) and α |= yx.

In addition to this convenient property, the encoding also meets the required
property.

Lemma 11. The equation system ~g(~x) = ~1 is satisfiable if and only if τ(A,~g)
is satisfiable.

Proof. =⇒: Let α be a total assignment to X(A) satisfying the equation system.
Let β be the total assignment β on Y(A) which maps yf to f�α. Thus,
β satisfies every clause in τ(A,~g) due to (fun-sem). Indeed, let C be a
clause in τ(A,~g). Using the notation in Definition 8, we know that α |= gi.
By (fun-sem) there exists a j ∈ [w] such that α |= f

εj
j . That is fj�α = εj .

Hence yfj �β = εj , i. e. β |= y
εj
fj

, and therefore β |= C.

8

⇐=: Let α be a total assignment on Y(A) which satisfies τ(A,~g). We construct
an assignment β on X(A) by setting

xj 7→ α
(
y~x7→xj

)
.

Let f be an arbitrary boolean function with Vars(f) ⊆ Xi(A) for some row
i ∈ [m]. A simple induction on its complexity yields that α |= yf if and
only if β |= f . In particular, for any i ∈ [m] we have that β |= gi because
ygi is an axiom satisfied by α.

5.2 Size of the Functional Encoding

Lemma 12. The CNF τ(A,~g) contains at most m · 22s (extension) variables
provided that |Ji(A)| ≤ s for all i ∈ [m] for some s.

Proof. The matrix A has m rows. For each row i ∈ [m] and for each function f
on Xi(A) there is a extension variable yf . Every variable in τ(A,~g) has this
form.

In the worst case, the CNF does not only contain many variable but it also
shows a large clause.

Lemma 13. If the matrix A contains a row containing s times an 1, then τ(A,~g)
contains a clause of size 22s .

Proof. Let i be a row in A which contains s times an 1. There are 22s boolean
functions on Xi(A). Since

∨
{f | f is a function on Xi(A)} ≡ 1, the correspond-

ing clause also has the size 22s and is in τ(A,~g).

5.3 Refinements and Transformations

To provide a size lower bound we like to apply Theorem 2 as it reduces this task
to a search for a width lower bound. Thereto, the width of the encoding has
to be reasonably bounded. In the remaining part of this section, we try to find
a refinement of the previous encoding, Definition 8, which has only sufficiently
short axioms.

Definition 14. For any k, the expression τ≤k(A,~g) denotes the CNF of all those
clauses in τ(A,~g) the width of each is at most k. y

Lemma 15. Let π be a resolution refutation of τ(A,~g). There is a resolution
refutation π′ of τ≤2s(A,~g) such that

(a) width(π′) ≤ width(π), and

(b) |π′| ≤ 2 · |π|,

provided that |Ji(A)| ≤ s for all i ∈ [m] for some s.

9

Proof. Informally, we have to get rid of large axioms. Let C be an arbitrary
axiom in τ(A,~g). By Definition 8, this axiom has the shape

∨
k y

εk
fk

for some
functions fk and switches εk ∈ {0, 1} such that

•
⋃
k Vars(fk) ⊆ Xi(A), and

• gi |=
∨
k f

εk
k =: f ,

both for some row i ∈ [m]. The function gi depends on at most s variables, namely
Xi(A). Hence, on at most 2s inputs the function gi becomes 1. By (fun-sem)
each such input must be trapped by one of the functions fεkk . Therefore, we can
choose for each input such a function. Let K be the set of indices to all those
chosen functions. Obviously, C ′:=

∨
k∈K y

εk
fk

is both a subset of C and an axiom
in τ(A,~g) because f =

∨
k∈K y

εk
fk

. Moreover, width(C ′) ≤ |K| ≤ 2s. Hence, in π
we can replace any large axiom C with a small axiom C ′ and with an instance
of the weakening rule.

Lemma 16. Let π be a resolution refutation of τ≤2s(A,~g). There exists a
resolution refutation π′ of τ≤3(A,~g) such that

(a) width(π′) ≤ width(π), and

(b) |π′| ≤ 2 · 2s · |π|.

Proof. Informally, large axioms have be to replaced with derivations from small
axioms. Let C be an axiom with width(C) > 3. By Definition 8, it emerges
from a row i ∈ [m], functions f1, . . . , fw, and from switches ε1, . . . , εw for some
w. The construction of an axiom relies on the composed function

∨
k∈[w] f

εk
k .

However, it can be also understood as be built from just two functions. Those
are fε11 and fε22 ∨ . . . ∨ fεww , for instance. Hence,

C1 := yε1f1 ∨ yfε22 ∨...∨f
εw
w

is also an axiom. Using that

¬ (fεii ∨ . . . ∨ f
εw
w) ∨ fεii ∨

(
f
εi+1
i+1 ∨ . . . ∨ f

εw
w

)
is always true for any i = 2, . . . , w − 1, even the corresponding clauses

Ci := ¬y
f
εi
i ∨...∨f

εw
w
∨ yεifi ∨ y

f
εi+1
i+1 ∨...∨f

εw
w

(i = 2, . . . , w − 2)

and

Cw−1 := ¬y
f
εw−1
w−1 ∨f

εw
w
∨ y

εw−1
fw−1

∨ yεwfw

are axioms. Therefore, the clause C can be resolved from C1, . . . , Cw−1 succes-
sively in at most 2w steps. As the parameter w is bounded by 2s due to the
assumption, the refutation can be transformed as required.

10

Although the transformation in the previous proof enlarges a refutation,
the growth can be kept within a limit if s is bounded by the logarithm of the
parameters n and m, for instance.

Example 17. Let us carry out the preceding replacement of a large axiom for
the functions f1, . . . , f4. For simplicity we omit the switches.

yf1∨ yf2∨f3∨f4
¬yf2∨f3∨f4∨ yf2∨ yf3∨f4

¬yf3∨f4∨ yf3 ∨ yf4
yf1∨ yf2∨ yf3 ∨ yf4

The clause below the line can be derived in five steps—also counting the axioms.
y

Remark. In the literature, large clause are often replaced with small ones by
introducing some auxiliary variable for each clause. However, in our setting,
these auxiliary variables are already there and hence for free. In other words, the
earlier transformation moves the syntactical complexity to a semantic one. y

6 Width Lower Bound

6.1 The Concept of a Measure

To prove a lower bound on the width of a refutation, we introduce a measure
for clauses to determinate their degree of inconsistency [3, Proof of Lemma 1][5,
Sec. 5]. This measure should be small for axioms but high for the empty clause.
In addition, if a clause has a medium measure it should be large.

Definition 18. Let Γ be a set of clauses called axioms. A measure is a function
mapping a clause to an integer such that

• µ is subadditive, i. e.

µ(C) ≤ µ(C0) + µ(C1) (µ-subadd)

holds for any resolution step C0 C1
C ,

• µ(C) = 1 for any axiom C, and (µ-ax)

• µ(⊥) > r holds for some r > 1. (µ-⊥)

y

Lemma 19. Let µ be a measure as above for a set Γ of clauses. Any refutation
of Γ contains a medium-measured clause, i. e. a clause C with r/2 < µ(C) ≤ r.

11

Proof. Starting at the root, we walk through the resolution refutation towards
the leaves as long as the measure of the considered clause is greater than r.
Obviously, this walk cannot stop at a leaf since r > 1. Assume that we have
stopped at a clause C, that is µ(C) > r and µ(C0), µ(C1) ≤ r where C0 and C1

are the premises to C. We claim that C0 or C1 is medium measured. So, if not,
then µ(C0), µ(C1) ≤ r/2. But by (µ-subadd), one gets µ(C) ≤ r contradicting
the assumption.

6.2 The Measure

In general, the function µ shall measure how contradictory a clause is. In our
setting, a contradiction is given by the set G:={gi | i ∈ [m]} because it is
unsatisfiable as long as τ(A,~g) is, c. f. Lemma 11. Informally, the proportion of
G needed to support a clause determinate this measure.

Definition 20. For a clause C over Y(A), its semantic JCK is the function

JCK:=
∨
yf∈C

f ∨
∨
¬yf∈C

¬f .

y

Definition 21. The measure µ(C) for a clause C is the size of a minimal
I ⊆ [m] such that

• ∀yεf ∈ C ∃i ∈ I. Vars(f) ⊆ Xi(A), and (µ-cover)

• {gi | i ∈ I} |= JCK. (µ-sem)

By “a witness for µ(C)” we refer to such a set I of minimal cardinality. y

In other words, (µ-cover) just says that the essential variables of the denoted
function JCK are covered by a row in I.

Lemma 22. The measure µ meets the properties (µ-subadd) and (µ-ax).

Proof. As for (µ-ax), every axiom C comes from a row i ∈ [n] by Definition 8.
The set {i} as I satisfies (µ-cover) and (µ-sem). Because of the existential
quantifier in (µ-cover) the measure cannot be zero as C is not empty.

For (µ-subadd), consider the resolution step C0 C1
C . Let I0 and I1, re-

spectively, be the witnesses for µ(C0) and µ(C1). Then I := I0 ∪ I1 is a superset
of a witness for µ(C). Indeed, C ⊆ C0 ∪ C1. Therefore (µ-cover) is satisfied
for C by I as it is for C0 by I0 and for C1 by I1, respectively. The soundness
of resolution and the definition of J K yield that JC0K ∧ JC1K |= JCK. Since
{gi | i ∈ Ik} |= JCkK holds for k ∈ {0, 1}, so also {gi | i ∈ I0 ∪ I1} |= JCK
does.

12

6.3 Width Lower Bound

Definition 23. A boolean function f is `-robust if for every restriction ρ holds:
if f�ρ is a constant function then |ρ| ≥ `. y

Note that almost all boolean functions are robust in a certain sense, c. f.
Appendix A.

Theorem 24. Let A be an (r, s, c)-expander of size m×n and let g1, . . . , gm be
`-robust functions such that Vars(gi) ⊆ Xi(A). Then every resolution refutation
of τ(A,~g) must have a width which is at least

r(c+ `− s)
2`

provided that c+ ` ≥ s+ 1.

Proof. By Lemma 19, Lemma 22, and Lemma 25, following.

Lemma 25. The following holds.

(a) If r/2 < µ(C) ≤ r then width(C) ≥ r(c+`−s)
2` .

(b) µ(⊥) > r provided that c+ ` ≥ s+ 1.

Proof. Since the proofs for each claim are rather similar, we start with their
common part. As for the second claim, its contrapositive is shown, and we
identify C as the empty clause, just for convenience. Let I be a witness for µ(C).
The set I can be partitioned in I0 and I1 such that I0 is minimal for (µ-cover).
As an intermediate step, we claim that

|Ji1 ∩ ∂A(I)| ≤ s− ` for all i1 ∈ I1, (9)

that is, the intersection is quite small.

Proof of claim (9). Let i1 ∈ I1. The minimality of I, and the choice of I0 and
I1 ensure that the removal of any element of I1 ruins the property (µ-sem) for I.
So, {gi | i ∈ I \ {i1}} 6|= JCK. Now let α be an arbitrary assignment to the
variables X(A) which models gi for all i ∈ I \ {i1} but falsifies JCK.

Let ρ be the restriction α but additionally undefined on all variables xj for
j ∈ Ji1 ∩ ∂A(I). In other words, ρ is undefined for those variables on which only
the function gi1 among {gi | i ∈ I} depends. Therefore, ρ is still total for gi for
all i ∈ I \ {i1}. All variables in JCK are mentioned in

⋃
i∈I0 Xi(A) by (µ-cover)

and by the choice for I0. Since i1 /∈ I0, as I0 and I1 are disjoint, the restriction
ρ is also defined on all variables in JCK. Therefore, gi�ρ = 1 for all i ∈ I \ {i1},
and JCK �ρ = 0. By (µ-sem), the function gi1�ρ must be 0.

Let σ be the restriction ρ but only defined on the variables gi1 depending
on. All these variables are listed in Xi1(A). Obviously, gi1�σ = 0. As ρ is
undefined on Ji1(A) ∩ ∂A(I), the domain of σ is just Ji1(A) \ ∂A(I). Since
the function gi1(A) is `-robust, the domain of σ is at least `. In other words,
|Ji1(A) \ ∂A(I)| ≥ `. Since the matrix A is an (, s,)-expander, Ji1(A) ≤ s.
Hence |Ji1(A) ∩ ∂A(I)| = |Ji1(A)| − |(Ji1(A) \ ∂A(I))| ≤ s− `.

13

We continue with the proof of Lemma 25. For both parts, we have |I| ≤ r.
Notice that we also prove the contrapositive of the second part. Since A is an
(r, s, c)-expander and |I| ≤ r, we have

c |I| ≤ |∂A(I)| .

Each boundary element dates from an element either of I0 or of I1. In the first
case, each element of I0 can contribute at most s boundary elements. As for I1,
every element of I1 produce at most s− ` boundary elements due to (9).

c |I| ≤ . . . ≤ s |I0| + (s− `) |I1|
= (s− `) |I| + ` |I0| (10)

Since I0 is chosen as minimal, each of its elements is justified by a literal in C.

c |I| ≤ . . . ≤ (s− `) |I| + ` · width(C) (11)

Now we can address the two parts to be proven.

(a) The assumption of the first part yields |I| > r/2. Hence the inequality (11)
results in

width(C) ≥ (c+ `− s) |I|
`

>
(c+ `− s)r

2`
.

(b) For the second claim, we have I0 = ∅ as C is the empty clause. Therefore
the inequality (10) is just c |I| ≤ (s− `) |I|. By (µ-sem) the set I cannot
be empty. Hence the last inequality is the negation of c+ ` ≥ s+ 1.

7 Size Lower Bound

7.1 From a Width Lower Bound to a Size Lower Bound

Corollary 26. Let ε > 0 be an arbitrary constant, let A be a (r, s, εs)-expander
of dimension m× n, and let g1, . . . , gm be (1− ε/2) · s-robust functions such
that Vars(gi) ⊆ Xi(A) for all i ∈ [m]. Then the size of any resolution refutation
of τ(A,~g) is at least

exp

(
Ω
(

r2

m 22s

))
/2s.

Proof. Let π be a resolution refutation of τ(A,~g). Apply the transformation
described in Lemma 15 and then the one in Lemma 16. Let π′ be the obtained
resolution refutation of τ≤3(A,~g) such that

(a) width(π′) ≤ width(π) and

(b) |π′| ≤ 2s+2 · |π|.

14

Moreover, τ(A,~g) contains at most m · 22s variables, c. f. Lemma 12. The same
amount of variables occur in τ≤3(A,~g). In all, we get the following inequality.

3 +O
(√

(m · 22s) · log(2s+2 · |π|)
)

≥ width(π′) (by Theorem 2)

≥
r ·
(
εs + (1− ε/2)s− s

)
2(1− ε/2)s

(by Theorem 24)

= r
ε

2(2− ε)

Taking the fraction on the right hand side as a constant, we can solve the
inequality and get the claimed lower bound for |π|.

7.2 Some Corollaries

The lower bound presented in Corollary 26 is conditional. As a next step, we
eliminate these conditions.

Definition 27. Let A be a matrix over {0, 1} of dimension m× n. A sequence
of functions g1, . . . , gm is good for A if and only if for each i ∈ [m] the following
holds.

(a) gi is 5
16 log(log n)-robust and

(b) Vars(gi) ⊆ Xi(A). y

Corollary 28 (First Version). There exists a family
(
A(m,n)

)
n,m∈N of m× n-

sized matrices such that for any sequence of functions ~g ≡ g1, . . . , gm which is
good for A(m,n), and for any resolution refutation π of τ(A(m,n), ~g) the size of π
is (at least)

exp

(
n2−O(1/ log(logn))

m

)
/
√

log n .

Moreover, the number of (extension) variables in τ(A(m,n), ~g) is at most m · n.

Proof. Let m and n be given. With loss of generality, m ≤ n2, as otherwise the
exponent is decreasing and gets zero in the limit. The expander construction
in the proof of Theorem 7 yields an (r, s, 3

4s)-expander A for some s—to be
fixed later on—and r = εn

s n−
1
sε and for a constant ε. The matrix A has the

dimension n2 × n. We cross out all rows but m rows arbitrarily. The resulting
matrix, say A(m,n), is still an (r, s, 3

4s)-expander.
In our setting, Corollary 26 states that any resolution refutation of τ(A,~g)

requires

exp

(
Ω
(

r2

m · 22s

))
/ 2s (12)

15

steps if it is applicable at all. However, we first try to get the claimed lower
bound. The exponent in (12) can be simplified to

r2

m · 22s
=
ε2n2n−

2
sε

m · 22s
(choice for r)

=
ε2n2− 2

sε −
2s

logn

m
. (using that 22s = n2s/ logn) (13)

To get a reasonable lower bound, we try to find an s (as a function in n and
m) such that the exponent to n in (13) is as close to 2 as possible. Therefore,
we have to ensure that in the limit 2s

logn is bounded by a constant c � 1.
Hence, s ≤ log(c) + log(log n) should hold in the limit. To this end, we choose
s := 1

2 log(log n). Thus, the exponent to n can be bounded by

2 − 2
sε
− 2s

log n
= 2 − 4

ε log(log n)
− 1√

log n

≥ 2 − 4
ε log(log n)

− 1
log(log n)

for n ≥ 216

= 2−O(1/ log(log n)) .

To apply Corollary 26, the functions ~g need to be (1 − 3/4
2) · s-robust, that

is 5
16 log(log n)-robust. Indeed, this is our assumption. Finally, we obtain the

claimed lower bound using that 2s =
√

log(n) for the denominator in (12). As
s ≤ log(log(n)), there are at most m · n variables in the considered CNF due to
Lemma 12.

Having a reasonable lower bound for τ(A(m,n), ~g), we have to ensure that the
formula is unsatisfiable at all. For this purpose, let ⊕ denote the exclusive
or. In the context of vector notation, ⊕ is meant componentwise. As the
operation is associative and commutative, we set ⊕{x1, . . . , xk}:=x1 ⊕ . . .⊕ xk.

Corollary 29 (Second Version). There exists a family of m×n matrices, A(m,n),
such that for any sequence of functions ~g good for A(m,n) it is true that

(a) τ(A(m,n), ~g ⊕~b) is unsatisfiable for some ~b ∈ {0, 1}m if m > n, and

(b) for any ~b ∈ {0, 1}m, any resolution refutation of τ(A(m,n), ~g ⊕~b) has a
size at least

exp

(
n2−O(1/ log(logn))

m

)
/
√

log n.

16

Proof. For any ~b ∈ {0, 1}m the following is true.

τ(A(m,n), ~g ⊕~b) unsatisfiable w. r. t. Y(A)

⇐⇒~g(~x)⊕~b = 1 is unsatisfiable w. r. t. ~x ≡ x1, . . . , xn (by Lemma 11)

⇐⇒~g(~x) = ¬~b is unsatisfiable w. r. t. ~x

⇐⇒~g(~x) 6= ¬~b for all ~x ∈ {0, 1}n

⇐⇒¬~b is not in the image of ~g

Indeed, ~g : {0, 1}n → {0, 1}m is not surjective, since m > n. As the robustness
is invariant under negation, Corollary 28 yields the claim.

Consequently, it remains to find candidates for the base functions. Although,
by Lemma 32, almost any function is suitable, we consider particular ones.

Definition 30. Let A be a matrix over {0, 1} of dimension m× n. The charac-
teristic function of the row i ∈ [m] is

χ⊕i (A) : ~x 7→ ⊕Xi(A).

Notice that the functions χ⊕i (A) are |Xi(A)|-robust. Additionally, for b ∈ {0, 1}m
we set

τχ(A,~b):=τ(A,
−−−−→
χ⊕(A)⊕~b). y

Corollary 31 (Third Version). There exists a family of m×n matrices, A(m,n),
such that:

(a) τχ(A(m,n),~b) is unsatisfiable for some ~b ∈ {0, 1}m if m > n, and

(b) for any ~b ∈ {0, 1}m, any resolution refutation of τχ(A(m,n),~b) has a size
at least

exp

(
n2−O(1/ log(logn))

m

)
/
√

log n.

Proof (as a patch to the proofs of previous corollaries). It remains to show that
the functions χ⊕i (A) are good for A. During the construction of the expander,
the 1s in each rows are chosen randomly. The cancellation of its rows is also
at random. Hence, any χ⊕i (A) is a function on at most 1

2 log(log n) variables.
Similarly to the argument in the proof to Theorem 7 leading from (6) to (7),
these are 5

8 ·
1
2 log(log n) robust, therefore also good for A, with a high probability.

Thus, there is a matrix such that each of its characteristic functions is robust
enough.

Let C > 0 and b > 1 be the witnesses in the lower bound of Corollary 31, i. e.
the size of any refutation of the considered CNF is at least

b

(
n2−C/ log(logn)

m

)
/
√

log n.

17

If we take m:=n1+C/ log(logn) then the lower bound gets a superpolynomial lower
bound, namely

bn
1−2C/ log(logn)

/
√

log n, (14)

as m > n. However, this lower bound is measured in the parameter n but not in
the size of the respective CNF. Nevertheless, if τχ(A,~b) is unsatisfiable then so

τ≤3
χ (A,~b):=τ≤3(A,

−−−−→
χ⊕(A)⊕~b) is by Lemma 15 and Lemma 16. On the other

hand, any resolution refutation of τ≤3
χ (A,~b) is also a refutation of τχ(A,~b) as

the former is a sub-CNF of the latter. Since the amount of variables in τχ(A,~b)
is bounded by n ·m because of Corollary 28, the size of τ≤3

χ (A,~b) is O
(
(n ·m)3

)
.

With respect to the foregoing setting, this size is also polynomially bounded
in n. All in all, the lower bound in (14) turns into a proper lower bound which
measures the size of a refutation in terms of the size of the refuted formula.
Hence, we got a hard generator for resolution.

Remark (On Weakening). The weakening rule is used in the proof of Lemma 15
only. To incorporate the weakening rule explicitly in the proofs for the lower
bounds, at least the measure should be aware of this rule. Definition 18 can be
adapted easily to weakening, just by requiring that

µ(C)/2 < µ(C ′) ≤ µ(C) (µ-weakening)

holds for every instance C′

C of the weakening rule. This setting keeps Lemma 19
valid. However, our choice for µ in Definition 21 does not meet this requirement.
Indeed, consider the instance

C ′

C

where C ′ is an axiom of τ(A,~g) and

C := C ′ ∪ {yπni | i ∈ [n]}.

The functions πni are the projections πni (x1, . . . , xn) = xi. Following Lemma 22,
µ(C ′) = 1. But µ(C) ≥ bns c because the witnesses for (µ-cover) must cover all
columns and each row is responsible for at most s columns, in our setting. The
parameter can be chosen in such way that this instance violates (µ-weakening).
However, the might be another solution to this weakness. y

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigder-
son. Pseudorandom Generators In Propositional Proof Complexity. Founda-
tions of Computer Science, pages 43–53, 2000.

[2] Noga Alon. Spectral Techniques in Graph Algorithms. In Lecture Notes In
Computer Science, volume 1380, pages 206–215. Springer-Verlag, 1998.

18

[3] Paul Beame and Toniann Pitassi. Simplified and Improved Resolution Lower
Bounds. In Proceedings of the 37th IEEE Foundations of Computer Science,
pages 274–282. IEEE, 1996.

[4] Arnold Beckmann and Jan Johannsen. Bounded Arithmetic and Resolution-
Based Proof Systems. Kurt Gödel Society, Vienna, 2004.

[5] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution
made simple. Journal of the Association for Computing Machinery, 48(2):149
– 169, March 2001.

[6] Oded Goldreich. Computational Complexity: A Conceptual Perspective.
Cambridge University Press, 2008.

[7] Donald E. Knuth. Big Omicron and Big Omega and Big Theta. SIGACT

News, 8(2):18–24, 1976.

[8] Alexander Razborov. Pseudorandom Generators hard for k-DNF Resolution
and Polynomial Calculus. Availalble at the author’s web page, 2003.

[9] Grigori S. Tseitin. On the complexity of derivations in propositional calculus.
In A. O. Slissenko, editor, Studies in constructive mathematics and mathe-
matical logic, Part II, Seminars in Mathematics (translated from Russian),
pages 115–125. Consultants Bureau, New-York-London, 1968.

A Almost all Functions are Robust

Lemma 32. Let 0 < ε < 1. For any sufficiently large k, any random function
over k variables is εk-robust which a probability ≥ 1

2 . Here “random” means that
the value of a function is chosen randomly and independently for each input.

Proof. A function f is not εk-robust if and only if there exists a restriction ρ
such that |ρ| < εk and f�ρ is a constant function. In particular, then there also is
a restriction ρ such that |ρ| = εk and f�ρ is a constant function. Informally, the
truth table of such a function f contains a “block” of |ρ| columns and 2k−|ρ| rows
such that the result values are constant. This block might be distributed. In
total, there are 22k boolean functions over k variables. On the other hand, there
are

(
n
`

)
2` restrictions each fixes ` variables. Presuming that a given restriction

of size εk makes a function constant, there are 22k−2k−εk+1 many ways to choose
such a function.

Pr [f is not εk-robust] ≤
(
k
εk

)
2εk 22k−2k−εk+1

22k

=
(
k
εk

)︸︷︷︸
≤2k

2εk−2(1−ε)k+1

≤ 2(1+ε)k−2(1−ε)k+1

19

The right hand side can be strictly bounded by 2−1, if we require that (1+ε)k+2 <
2(1−ε)k holds additionally. As ε < 1 and the exponential function dominates the
linear function eventually, the considered probability is less than a half as long
as k exceeds a certain value.

20

